王鹏蔚,群众,园艺林学学院园艺系教授,入选国家青年人才项目。2003-2006年就读与英国布里斯托大学,获得医学生物化学学士学位;2006-2010年在英国牛津布鲁克斯大学Chris Hawes教授实验室获得植物细胞生物学博士学位;2011-2017年在英国杜伦大学Patrick Hussey教授实验室从事博士研究。以第一作者/通讯作者在Current Biology(3篇)、Nature Communications、Trends in Plant Science(2篇)、New Phytologist等国际著名杂志上发表论文30余篇。
现任中国植物学会-植物细胞生物学专业委员会委员、湖北省细胞生物学会理事会理事;近年来为Nature Communications、Current Biology、PNAS、Plant Cell、 Cell Report、Plant Physiology等知名杂志审稿人;现任Frontiers in Plant Science编委、特邀副主编,New Phytologist副主编。
实验室主要从事植物细胞生物学与园艺基础生物学研究,研究对象包括柑橘、番茄、拟南芥,主要研究方向包括:
1. 植物内质网-细胞器互作网络:内质网作为细胞内膜系统的核心结构,可以与多种细胞器(或者细胞骨架)相互作用,形成一个庞大而复杂的互作网络。实验室多年来着重解析负责内质网-细胞器互作的分子机器及其生物学意义,重点关注细胞器互作网络在植物发育与生殖等方面的作用。
2. 植物细胞骨架:细胞骨架的动态调控,对于植物的生长发育尤为重要,在园艺作物中,细胞骨架也是多种植物器官(果实)形态建立的决定因素,实验室以此为切入点,关注细胞骨架对于植物细胞极性与器官形态建立的分子机制。
3. 自噬的发生与调控:自噬机制用于降解受损细胞器、蛋白等物质,对于维持细胞稳态、加强植物抗性尤为重要。实验室通过解析植物细胞中自噬体的生物发生与调控机制,解析与细胞稳态平衡与逆境应答相关的生物学过程。
4. 细胞器功能与果实品质调控:果实细胞中特定的细胞器对于果实品质尤为重要,例如叶绿体与有色体参与果实色泽建立;线粒体参与果实中关键代谢产物的合成。实验室通过解析这些重要细胞器的生物发生、命运周期,从而了解参与果实品质建立与维持的生物学机制。
代表性论文(#共同一作;*通讯作者):
Zang, J. #, Klemm, S. #, Pain, C., Duckney, P., Bao, Z., Stamm, G., Kriechbaumer, V., Bürstenbinder, K., Hussey, P. J.*, and Wang, P.* (2021). A Novel Plant Actin Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at Endoplasmic Reticulum Plasma Membrane Contact Sites. Curr Biol, 31:1251-1260.
Gong, J. #, Zeng, Y. #, Meng, Q., Guan, Y., Li, C., Yang, H., Zhang, Y., Ampomah-Dwamena, C., Liu,P., Chen, C., Deng, X., Cheng, Y., and Wang,P.* (2021). Red light-induced citrus fruit colouration is attributable to increased carotenoid metabolism regulated by FcrNAC22. J Exp Bot, 72:6274-6290
Gong, J. #, Tian, Z. #, Qu, X., Meng, Q., Guan, Y., Liu, P., Chen, C., Deng, X., Guo, W., Cheng, Y., and Wang,P.* (2021). Illuminating the cells: transient transformation of citrus to study gene function and organelle activities related to fruit quality. Hort Res, 8:175
Li, X., Chai, F., Yang, H., Tian, Z., Li, C., Xu, R., Shi, C., Zhu, F., Zeng, Y., Deng, X., Wang, P. *, and Cheng, Y. * (2021) Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. Hort Res, 8:31.
Wang, P.,* Gao, E., and Hussey PJ.* (2020) Autophagosome biogenesis in plants: an actin cytoskeleton perspective. Trends in Plant Sci, 25:850-858.
Wang, P.#, Pleskot, R.#, Zang, J., Winkler, J., Wang, J., Yperman, K., Zhang, T., Wang, K., Gong, J., Guan, Y., et al. (2019). Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nature Comm. 10, 5132.
Wang, P., Hawkins, T.J. and Hussey P.J.* (2017) Connecting membranes to the actin cytoskeleton. Curr Opin Plant Biol. 40: 71-76.
Wang, P. and Hussey, P.J.* (2017) NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. J Exp Bot 68(7): 1441-1450.
Wang P., Hawes C., and Hussey P.J.* (2017) Plant endoplasmic reticulum—plasma membrane contacts sites. Trends in Plant Sci, 22(4): 289-297.
Wang, P., Richardson, C., Hawes, C. and Hussey, P.J* (2016). Arabidopsis NAP1 regulates the formation of autophagosomes. Curr Biol, 26: 2060-2069
Wang, P., Hawkins, T.J., Richardson, C., Sparkes, I., Hawes, C. and Hussey, P.J.* (2016) Plant VAP proteins: domain characterization, intercellular localization, and role in plant development. New Phyt, 210:1311-1326.
Knox, K.,# Wang, P.,# Kriechbaumer, K., Tilsner, J., Frigerio, L., Sparkes, I., Hawes, C. and Oparka, K.* (2015) Putting the squeeze on PDs- a role for RETICULONS in primary plasmodesmata formation. Plant Phys, 168: 1563
Wang, P., Hawkins, T.J., Richardson, C., Cummins, I., Deeks, M.J., Sparkes, I., Hawes, C. and Hussey, P.J.* (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol, 24, 1397
Wang, P., Hummel, E., Osterrieder, A., Meyer, A.J., Frigerio, L., Sparkes, I. and Hawes, C*. (2011) KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. Plant J, 66, 613-628.