王鹏蔚,无党派人士,教授,入选国家青年人才项目。
个人简介:
2006年获得医学生物化学学士学位、2010年获得植物细胞生物学博士学位。在英国牛津布鲁克斯大学Chris Hawes教授实验室,英国杜伦大学Patrick Hussey教授实验室从事博士、博士后研究。以第一作者/通讯作者在Current Biology、PNAS、Nature Communications 、The Plant Cell、Cell Reports、New Phytologist等国际著名杂志上发表论文60余篇,编写英文专著一部。担任中国自然科学基金(NSFC)重点项目、面上项目、青年项目;英国生物技术与生物科学研究会(BBSRC)等科研项目通讯评审专家。现任中国侨联特聘专家委员会委员、中国植物学会-植物细胞生物学专业委员会委员、中国细胞生物学学会细胞器生物学分会委员、湖北省细胞生物学会理事会理事、学术期刊New Phytologist编辑、Science China Life Sciences青年编委、Frontiers in Plant Science编委。
教育经历:
英国牛津布鲁克斯大学,植物细胞生物学博士,2006年9月–2010年2月
英国布里斯托大学,生物化学学士,2003年9月–2006年7月
工作经历:
华中农业大学,园艺林学学院,教授,2017年3月-至今
英国杜伦大学,生物与生物医学学院,博士后,2011年3月–2017年3月
英国牛津布鲁克斯大学,生命科学学院,博士后,2010年2月– 2011年3月
研究方向:
1.植物内质网-细胞器互作网络:内质网可以与多个细胞器相互作用,形成一个庞大而复杂的互作网络。实验室多年来着重解析内质网-细胞器互作的分子机器及其生物学意义,并重点关注其在植物生长发育等方面的作用。
2.植物细胞骨架:在园艺作物中,细胞骨架是多种植物器官(果实)形态建立的决定因素,实验室重点关注细胞骨架对于植物细胞极性与器官形态建立的分子机制。
3.选择性自噬:自噬对于维持细胞稳态、加强植物抗性尤为重要。实验室通过解析植物细胞中自噬体形成与调控机制,解析与细胞稳态平衡与逆境应答相关的生物学过程。
4.细胞器功能与果实品质形成:线粒体、叶绿体等细胞器对于果实发育与品质形成尤为重要,实验室通过解析这些重要细胞器的生物发生、降解的分子机制,从而了解参与果实品质建立与维持的生物学机制。
主持项目:
1.国家自然科学基金国际(地区)合作项目:植物内质网-线粒体互作的分子基础及其对线粒体降解的影响,2023-2026
2.国家自然科学基金重点研究计划集成项目子课题:细胞器互作调控细胞自噬的机制和功能研究,2023-2025
3.国家自然科学基金重点研究计划培育项目:内质网-质膜连接点所调控的自噬机制对生物胁迫的响应,2019-2021
4.国家自然科学基金面上项目:植物SCAR复合体与线粒体协同调节的自噬机制对柑橘果实品质的影响,2018-2021
5.国家重点研发计划子课题:柑橘果实品质保持过程中亚细胞器功能及品质调控机制研究,2018-2022
6.国家重点研发计划子课题:细胞生命活动对柑橘营养吸收和品质形成的调控机制,2019-2022
7.国家留学基金委:地区科研合作与高层次人才培养项目“内质网在植物防御反应的功能研究”,2020-2021
8.湖北省自然科学基金“基础研究重大项目”:植物细胞器互作网络调控果实品质建立的分子基础,2024-2026
9.华中农大校自主创新基金:细胞骨架与内膜系统协同建立的细胞极性机制对柑橘胚胎发生的影响,2018-2020;
代表性论文:
1. Xu Z., Zang J., Zhang X., Zheng Q., Li Y., Field N., Fiserova J., Hua B., Qu X., Kriechbaumer V., Deeks M., Hussey P.J. Wang P.* (2025) The ER-PM interaction is essential for cytokinesis and recruits the actin cytoskeleton through the SCAR/WAVE complex. PNAS. 122: e2416927122.
2. Guo Y., Gong J., Hu R., Shi M., Bao Z., Cao S., Zhu K., Deng X., Cheng Y., Wang P.* (2025) Autophagy positively regulates ethylene-induced colouration in citrus fruits. The Plant Journal. doi: 10.1111/tpj.70114.
3. Gao E., Zhao Y., Wu M., Qu X., Wu X., Guo W., Wang P.* (2025) Enhanced storage lipid biosynthesis promotes somatic embryogenesis in citrus. Plant Physiology. 197: kiaf049.
4. Li Y., Pain C., Cui X., Li M., Zhang T., Li J., Kriechbaumer V., Wang P.* (2025) Studying ER-membrane contact sites in plants using the optogenetic approach: Taking the LiMETER as an example. The Plant Journal. ;121:e17191.
5. Gao E., Zhao Y., Wu M., Wang K., Zheng Q., Li Y., Qu X., Wu X., Guo W., Wang P.* (2025) Autophagy is essential for somatic embryogenesis in citrus through regulating amyloplast degradation and lipid homeostasis. New Phytologist. 245:684-697.
6. Zhang T., Wang K., Dou S., Gao E., Hussey P.J., Lin Z., and Wang P.* (2024) Exo84c-regulated degradation is involved in the normal self-incompatible response in Brassicaceae. Cell Reports. 43:113913.
7. Bao Z., Guo Y., Meng X., Shi C., Ouyang B., Qu X. and Wang P.* (2024) Microtubule-associated proteins MAP65-1 and SUN18/IQD26 coordinately regulate tomato fruit shape by affecting cell division. Plant Physiology. 194:629-633.
8. Bao Z., Guo Y., Deng Y., Zang J., Zhang J., Deng Y., Ouyang B., Qu X., Bürstenbinder K. and Wang P.* (2023) The microtubule-associated protein SlMAP70 interacts with SlIQD21a to regulate fruit shape formation in tomato. The Plant Cell. 35: 4266–4283. (Recommended by Herrera-Ubaldo H. 2023 Plant Cell, koad238)
9. Zhang T., Li Y., Li C., Gao E., Kroon J.T., Qu X., Hussey P.J. and Wang P.* (2023) Exo84c interacts with VAP27 to regulate exocytotic compartment degradation and stigma senescence. Nature Communications. 14:4888. (recommended by h1 connect. jiang l and shen j, doi: 10.3410/f.742750485.793601465)
10. Wang P*, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T (2023) Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. New Phytologist. 238:482-499.
11. Guo Y#, Bao Z#, Deng Y, Li Y, Wang P.* (2022) Protein subcellular localization and functional studies in horticultural research: problems, solutions, and new approaches. Horticulture Research. DOI: 10.1093/hr/uhac271.
12. Li C#, Duckney P#, Zhang T, Fu Y, Li X, Kroon J, Jaeger G, Cheng Y, Hussey P. J.*, and Wang P.* (2022) TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. Nature Communications. 13:5658. (Recommended by Faculty Opinion. Jiang L and Shen J, DOI: 10.3410/f.742339081.793596035)
13. Zang, J.#, Klemm, S.#, Pain, C., Duckney, P., Bao, Z., Stamm, G., Kriechbaumer, V., Bürstenbinder, K., Hussey, P. J.*, and Wang, P.* (2021). A Novel Plant Actin Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at Endoplasmic Reticulum Plasma Membrane Contact Sites. Current Biology, 31:1251-1260.
14. Gong, J.#, Zeng, Y.#, Meng, Q., Guan, Y., Li, C., Yang, H., Zhang, Y., Ampomah-Dwamena, C., Liu,P., Chen, C., Deng, X., Cheng, Y., and Wang,P.* (2021). Red light-induced citrus fruit colouration is attributable to increased carotenoid metabolism regulated by FcrNAC22. Journal of Experimental Botany. 72:6274-6290
15. Gong, J.#, Tian, Z.#, Qu, X., Meng, Q., Guan, Y., Liu, P., Chen, C., Deng, X., Guo, W., Cheng, Y., and Wang,P.* (2021). Illuminating the cells: transient transformation of citrus to study gene function and organelle activities related to fruit quality. Horticulture Research, 8:175
16. Wang, P.,* Gao, E., and Hussey PJ.* (2020) Autophagosome biogenesis in plants: an actin cytoskeleton perspective. Trends in Plant Science, 25:850-858.
17. Wang, P.#, Pleskot, R.#, Zang, J., Winkler, J., Wang, J., Yperman, K., Zhang, T., Wang, K., Gong, J., Guan, Y., et al. (2019). Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nature Communications. 10, 5132.
18. Wang, P., Hawkins, T.J. and Hussey P.J.* (2017) Connecting membranes to the actin cytoskeleton. Current Opinion in Plant Biology. 40: 71-76.
19. Wang, P. and Hussey, P.J.* (2017) NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. Journal of Experimental Botany 68(7): 1441-1450.
20. Wang P., Hawes C., and Hussey P.J.* (2017) Plant endoplasmic reticulum—plasma membrane contacts sites. Trends in Plant Science, 22(4): 289-297.
21. Wang, P., Richardson, C., Hawes, C. and Hussey, P.J* (2016). Arabidopsis NAP1 regulates the formation of autophagosomes. Current Biology, 26: 2060-2069. (Recommended by Hohfeld 2016 Curr Biol, R701-R718)
22. Wang, P., Hawkins, T.J., Richardson, C., Sparkes, I., Hawes, C. and Hussey, P.J.* (2016) Plant VAP proteins: domain characterization, intercellular localization, and role in plant development. New Phytologist, 210:1311-1326.
23. Knox, K.,# Wang, P.,# Kriechbaumer, K., Tilsner, J., Frigerio, L., Sparkes, I., Hawes, C. and Oparka, K.* (2015) Putting the squeeze on PDs- a role for RETICULONS in primary plasmodesmata formation. Plant Physiology, 168: 1563. (Co-first author)
24. Wang, P., Hawkins, T.J., Richardson, C., Cummins, I., Deeks, M.J., Sparkes, I., Hawes, C. and Hussey, P.J.* (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Current Biology, 24, 1397
25. Wang, P., Hummel, E., Osterrieder, A., Meyer, A.J., Frigerio, L., Sparkes, I. and Hawes, C*. (2011) KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. The Plant Journal, 66, 613-628.
学术专著:
1. Wang, P., Hawes, C., Richardson, C., Hussey, P.J. (2018). Characterization of Proteins Localized to Plant ER-PM Contact Sites. In: Hawes, C., Kriechbaumer, V. (eds) The Plant Endoplasmic Reticulum. Methods in Molecular Biology, vol 1691. Humana Press, New York, NY. (Contributing Author)
2. Hussey, P.J. and Wang, P. (eds), The Plant Cytoskeleton: Methods and Protocols, Methods in Molecular Biology, vol. 2604. Humana Press, New York, NY. (共同主编)