黄成龙
暂无内容
【第一或通讯作者论文】
(1) Ziwei Lyu, Yu Wang, Chenglong Huang*(通讯作者), Guozhong Zhang*, Kaiquan Ding, Nanrui Tang, Zhuangzhuang Zhao, Dynamic monitoring and counting for lotus flowers and seedpods with UAV based on improved YOLOv7-tiny[J]. Computers and Electronics in Agriculture, 2024, 225:109344.(IF=8.3)
(2) Yang, M.#, Huang, C.#, Li, Z., Shao, Y., Yuan, J., Yang, W. Song, P*. Autonomous navigation method based on RGB‐D camera for a crop phenotyping robot[J]. Journal of Field Robotics, 2024, 22379. (IF=4.7)
(3) Lu, Z., Huang, S., Zhang, X., Shi, Y., Yang, W., Zhu, L., Huang, C*(通讯作者). Intelligent identification on cotton verticillium wilt based on spectral and image feature fusion. Plant Methods, 2023, 19(1):75. (IF=5.1)
(4) Huang, S.; Lu, Z.; Shi, Y.; Dong, J.; Hu, L.; Yang, W.; Huang, C*(通讯作者).A Novel Method for Filled/Unfilled Grain Classification Based on Structured Light Imaging and Improved PointNet++. Sensors 2023, 23(14): 6331.(IF=3.847)
(5) 黄成龙*,华向东,黄诗豪,卢智浩,董佳乐,张俊,杨万能,基于Micro-CT和改进DeepSORT的再生稻再生芽追踪计数与再生力评价研究[J],农业工程学报,2023,39(11): 165-174.(EI)
(6) M. Sun, S. Huang, Z. Lu, M. Wang, S. Zhang, K. Yang, B. Tang, W. Yang, C. Huang*(通讯作者), A novel method for intelligent analysis of rice yield traits based on LED transmission imaging and cloud computing[J], Measurement, 2023, 217. 113017 (IF= 5.6)
(7) 张国忠,吕紫薇,刘浩蓬,刘婉茹,龙长江,黄成龙*(通讯作者). 基于改进 DenseNet 和迁移学习的荷叶病虫害识别模型[J]. 农业工程学报,2023,39(8):188-196.(EI)
(8) 黄成龙*,张忠福,卢智浩,张晓君,杨万能, 基于VFNet-Improved和Deep Sort的棉花黄萎病病情分级[J], 智能化农业装备学报(中英文),2023,4(2):12-21.
(9) Chenglong Huang, Zhongfu Zhang, Xiaojun Zhang, Li Jiang, Xiangdong Hua, Junli Ye, Wanneng Yang, Peng Song*, Longfu Zhu*, A novel intelligent system for dynamic observation of cotton verticillium wilt, Plant Phenomics,1(5): 0013, DOI: 10.34133/plantphenomics.0013. (IF= 6.961)
(10) 黄成龙,张忠福,华向东,杨俊雅,柯宇曦,杨万能. 基于改进Faster R-CNN和Deep Sort的棉铃跟踪计数[J].农业机械学报, 2023,54(06):205-213.(EI)
(11) 黄成龙,柯宇曦,华向东,杨俊雅,孙梦雨,杨万能.边缘计算在智慧农业中的应用现状与展望[J].农业工程学报,2022,38(16):224-234. (EI)
(12) Huang C#, Li W#, Zhang Z, Hua X,Yang J, Ye J, Duan L, Liang X and Yang W*. An Intelligent Rice Yield Trait Evaluation System Based on Threshed Panicle Compensation [J]. Front. Plant Sci, 2022, 13:900408. doi: 10.3389/fpls.2022.900408 (IF= 6.627)
(13) Huang C, Qin Z, Hua X, Zhang Z,Xiao W, Liang X, Song P and Yang W*.An Intelligent Analysis Method for 3D Wheat Grain and Ventral Sulcus Traits Based on Structured Light Imaging [J]. Front. Plant Sci. 2022, 13:840908.doi: 10.3389/fpls.2022.840908 (IF= 6.627)
(14) Qin Zhijie, Zhang Zhongfu, Hua Xiangdong, Yang Wanneng, Liang Xiuying, Zhai Ruifang; Huang Chenglong*(通讯作者). Cereal grain 3D point cloud analysis method for shape extraction and filled/unfilled grain identification based on structured light imaging. Scientific reports, 2022, 12(1): 3145. ( IF= 4.997)
(15) Zhang J#, Zhao B#, Yang C, Yang C, Shi Y, Liao Q, Zhou G, Wang C, Xie T, Jiang Z, Zhang, D, Yang W, Huang C* & Xie J*(共同通讯作者). Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks [J]. Frontiers in Plant Science, 2020, 11: 617. (IF= 6.627)
(16) 黄成龙, 李曜辰, 骆树康, 等. 基于结构光三维点云的棉花幼苗叶片性状解析方法[J]. 农业机械学报, 2019 (8): 26. (EI)
(17) 黄成龙,杨万能,吴迪,段凌凤*, 基于X-ray透射成像的稻穗米粒粒型及谷粒饱满度测量[J], 中国农业科技导报,2018, 20(8): 46-53. (CSCD)
(18) 段凌凤, 熊 雄, 刘 谦, 杨万能, 黄成龙*(通讯作者). 基于深度全卷积神经网络的大田稻穗分割[J].农业工程学报,2018,34(12): 202-209. (EI)
(19) 黄成龙, 张雪海, 吴迪, 叶军立, 杨万能*, 基于时间序列的玉米叶片性状动态提取方法研究[J]. 农业机械学报, 2017, 48(5):174-178. (EI)
(20) 吴迪, 杨万能, 牛智有, 黄成龙*(通讯作者), 小麦分蘖形态学特征 X 射线-CT 无损检测[J]. 农业工程学报[J], 2017, 33(14): 196-201. (EI)
(21) 吴迪,王梦坷, 杨万能, 刘谦, 黄成龙*(通讯作者),水稻表层根系性状无损测量技术研究[J]. 中国农业科技导报,2017,19(07):66-77. (CSCD)
(22) Huang C, Liu L, Yang W, et al. Rapid Identification of Rice Varieties by Grain Shape and Yield-Related Features Combined with Multi-class SVM[C]//Computer and Computing Technologies in Agriculture IX: 9th IFIP WG 5.14 International Conference, 2016: 390-398. (EI)
(23) Duan L, Yang W, Chen G, Xiong, L., & Huang, C*(通讯作者). Accurate Inference of Rice Biomass Based on Support Vector Machine[C]//Computer and Computing Technologies in Agriculture IX: 9th IFIP WG 5.14 International Conference, 2016: 356-365. (EI)
(24) Xuehai Zhang#, Chenglong Huang#, Di Wu, Feng Qiao, Wenqiang Li, Lingfeng Duan, Ke Wang, Yingjie Xiao, Guoxing Chen, Qian Liu, Lizhong Xiong, Wanneng Yang*, and Jianbing Yan*. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiology, 2017, 173(3):01516. (IF= 8.005)
(25) Wanneng Yang#, Zilong Guo#, Chenglong Huang#, Lingfeng Duan#, Guoxing chen#, Ni Jiang, Wei Fang, Hui Feng, Weibo Xie, Xingming Lian, Gongwei Wang, Qingming Luo, Qifa Zhang, Qian Liu* and Lizhong Xiong*, Combining high-throughput phenotyping and genome-wide association studies to unlock the genetic architecture underlying the natural variation of rice, Nature Communications, 2014, 5: 5087. (IF=16.6)
(26) Chenglong Huang, Lingfeng Duan, Qian Liu, and Wanneng Yang*, Development of a whole-feeding and automatic rice thresher for single plant, Mathematical and Computer Modelling, 2013, 58: 684-690. (IF= 1.9)
(27) Chenglong Huang, Wanneng Yang, Lingfeng Duan, Ni Jiang, Guoxing Chen, Lizhong Xiong, and Qian Liu*, Rice panicle length measuring system based on dual-camera imaging, Computers and Electronics in Agriculture, 2013, 98:158-165. (IF= 6.757)
【发明专利与软件著作权】
1.黄成龙、杨万能、段凌凤、冯慧、刘立豪、骆树康; 一种基于大视野X射线可见光配准成像的水稻稻穗性状全自动提取系统, 2019-1-5, 中国, ZL 201910034601.7
2.黄成龙、杨万能、冯慧、段凌凤、刘立豪;一种基于Led-红光透射成像的水稻稻穗性状智能分析系统, 2018-12-1, 中国, ZL 201811485818.1
3.黄成龙、卢智浩、黄诗豪;基于机器学习的棉花光谱数据处理和建模一体化软件V1.0,2023.07.11,2023SR1043226.
4.黄成龙、卢智浩;基于改进YOLOV7的作物多品种考种软件V1.0,2023.10.19,2023SR1264108
5.黄成龙、覃志杰; 基于作物籽粒三维点云的粒型特征自动提取分析软件V1.0, 2021-03-21, 2021SR1319870.
6.黄成龙、黄诗豪;基于三维点云的小麦籽粒腹沟3D表型及粒重测量软件V1.0,2022-06-01,2022SR0874174.
7.黄成龙、王明慧、唐碧鸿;基于Web服务的水稻产量智能解析软件V1.0,2023.09.10,2023SR698414
8.黄成龙、黄诗豪;基于马铃薯块茎三维点云的性状自动提取和分析软件V1.0,2024.7.12,2024SR0989074
9.黄成龙、陈炳楠;基于水稻大田图像的穗数检测与产量预估一体化软件V1.0,2024.8.21,2024SR1223320
10.杨万能、黄成龙、李为坤、叶军立、宋鹏、段凌凤、冯慧、陈国兴、熊立仲;基于AI云计算的水稻全自动脱粒及产量分析系统, 2020-12-10, 中国, ZL202011499153.7
11.杨万能、黄成龙、冯慧、段凌凤、陈国兴、熊立仲;水稻稻穗表型参数自动测量和穗重预测方法, 2017-10-24, 中国, ZL201510457927.2