访问量:   最后更新时间:--

郭亮

博士生导师
硕士生导师
教师姓名:郭亮
教师拼音名称:Guo Liang
电子邮箱:
所在单位:植物科学技术学院
职务:植物科学技术学院副院长
学历:博士研究生毕业
办公地点:华中农业大学作物遗传改良全国重点实验室(第二综合楼)B306
学位:博士学位
职称:教授
在职信息:在职
毕业院校:美国密苏里大学圣路易斯校区
所属院系:植物科学技术学院
其他联系方式

暂无内容

个人简介

郭亮,中国共产党员,教授、博士生导师,作物遗传改良全国重点实验室、国家油菜工程技术研究中心和湖北洪山实验室固定研究人员,油菜遗传改良创新团队成员,入选国家高层次引进人才(青年项目),获国家杰出青年科学基金资助。

2001-2006年先后获四川大学本科和硕士学位,2011年获美国密苏里大学圣路易斯校区细胞与分子生物学博士学位,2012-2014年在美国Donald Danforth Plant Science Center从事博士后研究,201410月受聘为华中农业大学教授。

兼任作物遗传改良全国重点实验室副主任、农业农村部油菜遗传育种重点实验室副主任、Molecular Breeding执行主编、植物科学学报副主编、Oil Crop Science副主编New Crops副主编、中国油料作物学报常务编委Journal of Integrative Plant Biology编委、Crop Design编委国际油菜咨询委员会成员、国际植物脂质会议委员会委员、亚洲植物脂质会议委员、中国农业生物技术学会理事、湖北遗传学会理事等。

主讲课程:

普通遗传学(本科课程);Plant Biology & Biotechnology(研究生英文课程)

课题组研究方向:

1. 油菜代谢生物学与遗传改良:1)籽粒含油量性状的生物学基础;2)磷脂、鞘脂代谢机制与功能;3)代谢组(脂质组)分析方法的建立与应用。

2. 油菜逆境生物学与遗传改良:耐盐碱、耐渍和抗旱性状的遗传基础和分子机制,耐逆种质资源筛选和利用。

3. 油菜生物技术研发与应用:耐除草剂油菜高亚麻酸油菜、特殊脂肪酸油菜研发和产业化研究。

课题组利用丰富的油菜种质资源,结合基因组、代谢组和表型组等手段全面解析油菜油脂合成与抗非生物逆境的遗传基础和分子机制,实现油菜优异种质资源优异基因挖掘优异基因功能解析优异基因利用,为培育高含油量和抗逆强的油菜品种打下基础,将优异的QTL/基因和种质资源应用到油菜的遗传改良中。

科研项目:

1. 作物遗传改良全国重点实验室团队项目:高产油油菜重大品种培育与推广,主持(2023-2025)

2. 国家杰出青年科学基金项目:油菜脂质代谢与遗传改良,主持(2023-2027)

3. 国家自然科学基金-云南联合基金重点项目:立体气候影响油菜籽含油量的机制研究,主持(2022-2025)

4. 湖北洪山实验室重大项目:高产油油菜新品种培育及应用,主持(2022-2024)

5. 湖北省科技重大专项:农业生物绿色优质品种选育,项目骨干(2022-2024)

6. 华中农业大学自主科技创新基金:油菜含油量新基因克隆及种质资源创新,主持(2022-2023)

7. 华中农业大学深圳营养与健康研究院研发项目:高亚麻酸油菜培育及其在动物饲料中的应用研究,主持(2022-2025)

8. 油料脂质化学与营养湖北省重点实验室开放课题:菜籽油营养成分鉴定及其遗传机制解析,主持(2022-2023)

9. 国家自然科学基金面上项目:利用脂质组分析解析油菜油脂合成的遗传基础,主持(2019-2022)

10. 转基因生物新品种培育重大专项转基因油菜新品种培育及产业化研究重大项目,主持(2018-2020)

11. 作物遗传改良国家重点实验室自主课题:参与油脂合成的关键酶蛋白质结构解析,主持(2018-2020)

12. 兵团重大科技项目:南疆沙区盐碱地饲料(绿肥)油菜产业化关键技术研究与集成示范,项目骨干(2018-2020)

13. 国家重点研发计划:小麦等作物功能基因组研究与应用,项目骨干(2016-2020)

14.  “国家海外高层次人才引进计划青年项目,主持(2016-2018)

15. 国家自然科学基金面上项目:植物鞘脂介导的信号传导研究,主持(2016-2019)

16. 华中农业大学自主科技创新基金:基于脂质组分析解析油菜种子高含油量的分子机制,主持(2015-2020)

17. 作物遗传改良国家重点实验室科研启动项目:植物脂质组分析方法的建立与应用,主持(2015-2019)

18. 华中农业大学引进人才科研启动项目:植物脂质代谢与功能研究,主持(2015-2019)

教学研究与教学改革:

1. 校级教改项目:新时代作物育种领军人才培养体系研究与实践,主持(2022-2024)

2. 校级教改项目:“油菜遗传改良”导学育人示范团队,参加(2022-2024)

3. 校级教改项目:油菜全产业链校企联合研究生培养实践基地的建设,参加(2022-2024)

4. 校级教改项目:《研究生生物技术创新能力提升》探究式教学示范课堂,参加(2022-2024)

5. 教育部教改项目:《高等农林教育国际化探索与实践》,参加(2020-2024)

6. 校级教改项目:《遗传学》MOOC建设,参加(2018)

7. 校级教改项目:《Plant & Biotechnology》研究生全英文课程建设,主持(2016-2018)

获奖:

1. 湖北青年五四奖章(2021)

2. 湖北省青年遗传学家奖(2021)

3. 华中农业大学优秀博士论文指导老师(2021,2022)

4. 第九届湖北省高等学校教学成果二等奖(3/8)

5. 2022年国家级教学成果二等奖(3/15)

6. 华中农业大学第十六届研究生指导教师教书育人奖(2018)

7. 国家高层次引进人才(青年项目)(2016)

申请或授权发明专利:

1. 一种适冷的I5-烯醇丙酮酰莽草酸-3-磷酸合酶基因,授权专利号:ZL202010178189.92/5

2. 一种抗草甘膦植物EPSPS酶双突变体及其克隆、表达与应用,授权专利号:ZL201911422900.45/6

3. 一种油菜S-腺苷-L-蛋氨酸依赖的甲基转移酶基因BnPMT6及其应用,授权专利号:ZL202010843041.21/3

4. 利用CRISPR/Cas9系统敲除甘蓝型油菜Bna.TT8基因的方法和应用,授权专利号:ZL201911198641.12/6

4. 油菜BnaPPT1基因及其编码蛋白在调控作物含油量中的应用,申请号:202210033039.81/3

5. 油菜类肉桂酰-CoA还原酶基因BnaCCR-LIKE在调控作物含油量中的应用,申请号:202210079554.X,1/3

发表论文及著作:

1. Li L#, Tian Z#, Chen J, Tan Z, Zhang Y, Zhao Hu, Wu X, Yao X, Wen W, Chen W* and Guo L* (2023) Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biology 24:141.

2. Fan Ru#, Zhao F#, Gong Z, Chen Y, Yang B, Zhou C, Zhang J, Du Z, Wang X, Yin P, Guo L* and Liu Z* (2023) Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nature Communications 14:194.

3. Zhang G, Zhou J, Peng Y, Tan Z, Zhang Y, Zhao H, Liu D, Liu X, Li L, Yu L, Jin C, Fang S, Shi J, Geng Z, Yang S, Chen G, Liu K, Yang Q, Feng H*, Guo L* and Yang W* (2023) High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. Plant Cell & Environment 46:549-566.

4. Sha G#, Sun P#, Kong X, Han X, Sun Q, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q, Zhou Y, Zhou W, Jain R, Gao J, Huang R, Chen X, Zheng L, Zhang W, Qin Z, Zhou Q, Zeng Q, Xie K, Xu J, Chiu TY, Guo L, Mortimer JC, Boutté Y, Li Q, Kang Z, Ronald PC* and Li G* (2023) Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 618:1017-1023.

5. Yang Z#, Wang S#, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y and Yang QY* (2023) BnIR a multi-omics database with various tools for Brassica napus research and breeding. Molecular Plant 16:775-789.

6. Tian X, Yu X, Wang Z, Guo L, Tu J, Shen J, Yi B, Fu T, Wen J, Ma C and Dai C* (2023) BnaMPK3s promote organ size by interacting with BnaARF2s in Brassica napus. Plant Biotechnology Journal 21:899-901.

7. Li Y, Tan Z, Zeng C, Xiao M, Lin S, Yao W, Li Q, Guo L and Lu S* (2023) Regulation of seed oil accumulation by lncRNAs in Brassica napus. Biotechnology for Biofuels and Bioproducts 16:22.

8. Yang Y#, Kong Q#, Tee WT, Li Y, Low PM, Patra B, Guo L, Yuan L and Ma W* (2023) Transcription factor bZIP52 modulates Arabidopsis seed oil biosynthesis through interaction with WRINKLED1. Plant Physiology https://doi.org/10.1093/plphys/kiad270.

9. Yan G, Li S, Ma M, Quan C, Tian X, Tu J, Shen J, Yi B, Fu T, Ma C, Guo L and Dai C* (2023) The transcription factor BnaWRKY10 regulates cytokinin dehydrogenase BnaCKX2 to control cytokinin distribution and seed size in Brassica napus. Journal of Experimental Botany https://doi.org/10.1093/jxb/erad201.

10. Liu D#, Yan G#, Wang S, Yu L, Lin W, Lu S, Guo L, Yang QQ and Dai C* (2023) Comparative transcriptome profiling reveals the multiple levels of crosstalk in phytohormone networks in Brassica napus. Plant Biotechnology Journal https://doi.org/10.1111/pbi.14063.

11. Zhang Q#, Boundjou NB#, Jia L, Wang X, Zhou L, Peisker H, Li Q, Guo L, Dörmann P, Lyu D and Zhou Y* (2023) Cytidine diphosphate diacylglycerol synthase is essential for mitochondrial structure and energy production in Arabidopsis thaliana. Plant Journal 114:338-354.

12. Jiang X, Li D, Du H, Wang P, Guo L, Zhu G and Zhang C* (2023) Genomic features of meiotic crossovers in diploid potato. Horticulture Research 10:uhad079.

13. Hong Y#, Xia H#, Li X#, Fan R, Li Q, Ouyang Z, Tang S and Guo L* (2022) ATP homeostasis in plastid modulated by BnaNTT1 sustains metabolism and growth of Brassica napus. Cell Reports 40:111060.

14. Zhang Y#, Zhang H#, Zhao H#, Xia Y, Zheng X, Fan R, Tan Z, Duan C, Fu Y, Li L, Ye J, Tang S, Hu H, Xie W, Yao X* and Guo L* (2022) Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biology 23:86.

15. Tan Z, Peng Y, Xiong Y, Xiong F, Zhang Y, Guo N, Tu Z, Zong Z, Wu X, Ye J, Xia C, Zhu T, Liu Y, Lou H, Liu D, Lu S, Yao X, Liu K, Snowdon R, Golicz A, Xie W*, Guo L* and Zhao H* (2022) Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biology 23:233.

16. Tang S, Peng F, Tang Q, Xia H, Yao X, Lu S and Guo L* (2022) BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. Journal of Advanced Research 42:29-40.

17. Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, Lu S and Guo L* (2022) Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. Plant Biotechnology Journal 20:2406-2417.

18. Ali U#, Lu S#, Fadlalla T#, Iqbal S, Yue H, Yang B, Hong Y, Wang X and Guo L* (2022) The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Progress in Lipid Research 86:101158.

19. Song JM#, Zhang Y#, Zhou ZW, Lu S, Ma W, Lu C, Chen LL* and Guo L* (2022) Oil plant genomes: current state of the science. Journal of Experimental Botany 73:2859-2874.

20. Han X, Tang Q, Xu L, Guan Z, Tu J, Yi B, Liu K, Yao X, Lu S and Guo L* (2022) Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. Frontiers in Plant Science 13:1065766.

21. Zhou Y, Yu H, Tang Y, Chen R, Luo J, Shi C, Tang S, Li X, Shen X, Chen R, Zhang Y, Lu Y, Ye Z, Guo L* and Bo Ouyang* (2022) Critical roles of mitochondrial fatty acid synthesis in tomato development and environmental response. Plant Physiology 190:576-591.

22. Li J#, Xie T#, Chen Y, Zhang Y, Wang C, Jiang Z, Yang W, Zhou G, Guo L* and Zhang J* (2022) High-throughput UAV-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. Journal of Experimental Botany 73:5264-5278.

23. Zhang G, Zhou J, Peng Y, Tan Z, Zhang Y, Zhao H, Liu D, Liu X, Li L, Yu L, Jin C, Fang S, Shi J, Geng Z, Yang S, Chen G, Liu K, Yang Q, Feng H*, Guo L* and Yang W* (2022) High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. Plant Cell & Environment DOI: 10.1111/pce.14485.

24. Yang Y#, Kong Q#, Lim AR, Lu S, Zhao H, Guo L*, Yuan L* and Ma W* (2022) Transcriptional regulation of oil biosynthesis in seed plants: current understanding, applications and perspectives. Plant Communications 3:100328.

25. Liu Y#, Du Z#, Lin S, Li H, Lu S, Guo L* and Tang S* (2022) CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Frontiers in Plant Science 13:848723.

26. Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L and Tang S* (2022) BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. Molecular Breeding 42:54.

27. Li Y, Ali U, Cao Z, Zeng C, Xiao M, We F, Yao X, Lu S, Guo L and Lu S* (2022) Fatty acid exporter 1 enhances seed oil content in Brassica napus. Molecular Breeding 42:75.

28. Yang Z#, Liang C#, Wei L#, Wang S, Yin F, Liu D, Guo L, Zhou Y and Yang QY* (2022) BnVIR: bridging the genotype-phenotype gap to accelerate mining of candidate variations for traits in Brassica napus. Molecular Plant 15:779-782.

29. Jiang C, Sun J, Li R, Yan S, Chen W, Guo L, Qin G, Wang P, Luo C, Huang W, Zhang Q, Fernie A, Jackson D, Li X*, Yan J* (2022) A reactive oxygen species burst causes haploid induction in maize. Molecular Plant 15:943-955.

30. Yu L, Dai Z, Zhang Y, Iqbal S, Lu S, Guo L and Yao X* (2022) Proteome-wide identification of S-sulfenylated cysteines reveals metabolic adaptation to freezing stress after cold acclimation in Brassica napus. Frontiers in Plant Science 13:1014295.

31. Fang S, Zhao P, Tan Z, Peng Y, Xu L, Jin Y, Wei F, Guo L and Yao X* (2022) Combining physio-biochemical characterization and transcriptome analysis reveal the responses to varying degrees of drought stress in Brassica napus. International Journal of Molecular Sciences 23:8555.

32. Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, Jin C, Fang S, Lu S, Guo L and Yao X* (2022) Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus. Frontiers in Plant Science 12:772708.

33. Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, Jin C, Fang S, Lu S, Guo L and Yao X* (2022) Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus. Frontiers in Plant Science 13:857149.

34. Han X, Zhang Y, Liu J, Zuo J, Zhang Z, Guo L and Zhang Y* (2022) 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. Biotechnology for Biofuels and Bioproducts 15:92.

35. Wang W, Pang J, Zhang F*, Sun L, Yang L, Fu T, Guo L and Siddique K (2022) Salt‑responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports 12:1666.

36. Liang H#, Ye J#, Wang Y, Wang X, Zhou X, Batley J, King GJ, Guo L, Tu J, Shi J* and Wang H* (2022) Systematic trait dissection in oilseed rape provides a comprehensive view, further insight, and exact roadmap for yield determination. Biotechnology for Biofuels and Bioproducts 15:38.

37. Lim AR#, Kong Q#, Singh SK, Guo L, Yuan L and Ma W* (2022) Sunflower WRINKLED1 plays a key role in transcriptional regulation of oil biosynthesis. International Journal of Molecular Sciences 23:3054.

38. Nwafor CC, Li D, Qin P, Li L, Zhang W, Zhou Y, Xu J, Yin Y, Cao J, He L, Xiang F, Liu C, Guo L, Zhou Y, Cahoon EB and Zhang C* (2022) Genetic and Biochemical Investigation of Seed Fatty acid Accumulation in Arabidopsis. Frontiers in Plant Science 13:942054.

39. Guan H, Liu X, Fu Y, Han X, Wang Y, Li Q, Guo L, Mur L, Wei Y and Zhao H* (2022) The locoweed endophyte Alternaria oxytropis affects root development in Arabidopsis in vitro through auxin signaling and polar transport. Journal of Experimental Botany DOI: 10.1093/jxb/erac430.

40. Yang B#, Li M#, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X* and Guo L* (2021) Non-specific phospholipase C4 hydrolyzes sphingophospholipids and sustains plant root growth under phosphate deficiency. Plant Cell 33:766-780.

41. Tang S#, Zhao H#, Lu S, Yu L, Zhang G, Zhang Y, Yang Q-Y., Zhou Y, Wang X, Ma W, Xie W* and Guo L* (2021) Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant 14:470-487.

42. Liu D#, Yu L#, Wei L#, Yu P, Wang J, Zhao H, Zhang Y, Zhang S, Yang Z, Chen G, Yao X, Yang Y, Zhou Y, Wang X, Lu S*, Dai C*, Yang Q* and Guo L* (2021) BnTIR:an online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus. Plant Biotechnology Journal 19:1895-1897.

43. Tan Z#, Xie Z#, Dai L, Zhang Y, Zhao H, Tang S, Wan L, Yao X, Guo L* and Hong D* (2021) Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnology Journal 20:211-225.

44. Yang B, Zhang K, Jin X, Yan J, Lu S, Shen Q, Guo L, Hong Y*, Wang X* and Guo L* (2021) Acylation of nonspecific phospholipase C4 determines its function in plant response to phosphate deficiency. Plant Journal 106:1647-1659.

45. Yu L#, Iqbal S#, Zhang Y, Zhang G, Ali U, Lu S, Yao X* and Guo L* (2021) Proteome-wide identification of S-sulfenylated cysteines in Brassica napus. Plant Cell & Environment 44:3571-3582.

46. Xiao Z, Tang F, Zhang L, Li S, Wang S, Huo Q, Yang B, Zhang C, Wang D, Li Q, Wei L, Guo T, Qu C, Lu K, Zhang Y, Guo L*, Li J* and Li N* (2021) The Brassica napus fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality. Biotechnology for Biofuels 14:190.

47. Xie T#, Li J#, Yang C, Jiang Z, Chen Y, Guo L* and Zhang J* (2021) Crop height estimation based on UAV images Methods, errors, and strategies. Computers and Electronics in Agriculture 185:106155.

48. Li J#, Iqbal S#, Zhang Y, Chen Y, Tan Z, Ali U and Guo L* (2021) Transcriptome analysis reveals genes commonly and differentially responding to flooding between tolerant and sensitive rapeseeds at germination stage. Plants 10:693.

49. Yan G, Yu P, Tian X, Guo L, Tu J, Shen J, Yi B, Fu T, Wen J, Liu K, Ma C and Dai C* (2021) DELLA Protein BnaA6.RGA and BnaC7.RGA negative regulate fatty acid biosynthesis through interacting with BnaLEC1s in Brassica napus. Plant Biotechnology Journal 19:2011-2026.

50. Cui Y, Zeng X, Xiong Q, Wei D, Liao J, Xu Y, Chen G, Zhou Y, Dong H, Wan H, Liu Z, Li J, Guo L, Jung C, He Y*, Qian W* (2021) Combining quantitative trait locus and co-expression analysis allowed identification of new candidates for oil accumulation in rapeseed. Journal of Experimental Botany 72:1649-1660.

51. Chawla H, Lee H, Gabur I, amilselvan-Nattar-Amutha S, Obermeier C, Song J, Liu K, Guo L, Parkin I and Snowdon R* (2021) Long-read genome sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnology Journal 19:240-250.

52. Song J#, Liu D#, Xie W, Yang Z, Guo L, Liu K, Yang Q* and Chen L* (2021) BnPIR: Brassica napus Pan-genome Information Resource for 1,689 accessions. Plant Biotechnology Journal 19:412-414.

53. Luo T#, Zhang Y#, Zhang C, Nelson MN, Yuan J, Guo L and Xu Z* (2021) Genome-wide association mapping unravels the genetic control of seed vigor under low-temperature conditions in rapeseed (Brassica napus L.). Plants 10:426.

54. 汪波#,文静#,张凤华,李立军,来永才,任长忠,鲁剑巍,沈金雄,郭亮,周广生*和傅廷栋*(2021)耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报 39:59-64.

55. 杜卓霖,郭亮,鲁少平*(2021)甘蓝型油菜皖油12种子中含芥酸含甘油三酯的空间分布. 油料作物学报 43:338-345.

56. Song J#, Guan Z#, Hu J#, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W, Cheng Y, Zhang Y, Liu K*, Yang Q*, Chen L* and Guo L* (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34-45.

57. Sturtevant D#, Lu S#, Zhou Z#, Shen Y#, Wang S, Song J, Zhong J, Burks D, Yang Z, Yang Q, Cannon A, Herrfurth C, Feussner I, Borisjuk L, Munz E, Verbeck G, Wang X, Azad R, Singleton B, Dyer J, Chen L*, Chapman K* and Guo L* (2020) The genome of jojoba (Simmondsia chinensis): a taxonomically-isolated species that directs wax-ester accumulation in its seeds. Science Advances 6:eaay3240.

58. Tang S, Liu D, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang Q* and Guo L* (2020) Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Plant Journal 104:1410-1422.

59. Cai G, Fan C, Liu S, Yang Q, Liu D, Wu J, Li J, Zhou Y, Guo L* and X Wang* (2020) Nonspecific Phospholipase C6 Increases Seed Oil Production in Oilseed Brassicaceae Plants. New Phytologist 226:1055-1073.

60. Lu S#, Aziz M#, Sturtevant D, Chapman K* and Guo L* (2020) Heterogeneous distribution of erucic acid in Brassica napus seeds. Frontiers in Plant Science 10:1744.

61. Iqbal S#, Ali U#, Fadlalla T, Li Q, Liu H, Lu S* and Guo L* (2020) Genome wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L. Plant Physiology and Biochemistry 147:101-112.

62. Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J, Guo L* and Lu S* (2020) An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Molecular Breeding 40:96.

63. Kong Q, Yang Y, Low PM, Guo L, Yuan L and Ma W* (2020) The function of the WRI1-TCP4 regulatory module in lipid biosynthesis. Plant Signaling & Behavior 15:1812878.

64. Kong Q, Singh S, Mantyla J, Pattanaik S, Guo L, Yuan L, Benning C and Ma W* (2020) TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 4 interacts with WRINKLED1 to mediate seed oil biosynthesis. Plant Physiology 184:658-665.

65. Kim SC, Guo L and X Wang* (2020) Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nature Communications 11:3439.

66. Dai C, Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, Liu K, Tu J, Shen J, Yi B, Fu T, Li X and Ma C* (2020) Roles of Brassica napus DELLA Protein BnaA6.RGA in modulation of drought tolerance by interacting one of ABA signaling component BnaA10.ABF2. Frontiers in Plant Science 11:577.

67. You L#, Zhang J, Li L, Xiao C, Feng X, Chen S, Guo L, and Honghong Hu* (2020) Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO2. Journal of Experimental Botany 71:4093-4108.

68. Kong Q, Yang Y, Guo L, Yuan L and Ma W* (2020) Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor. Frontiers in Plant Science 11:24.

69. Li N, Meng H, Li S, Zhang Z, Wang S, Liu A, Li Q, Zhao X, Song Q, Li X, Guo L, Li H, Zuo J and Luo K* (2020) Two novel plastid fatty acid exporters contribute to seed oil accumulation in Arabidopsis. Plant Physiology 182:1910-1919.

70. Ding L#, Li M#, Guo X#, Tang M#, Cao J, Wang Z, Zhu K, Guo L, Liu S* and Tan X* (2020) Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnology Journal 18:1255-1270.

71. Chen B#, Zhang G#, Li P, Yang J, Guo L, Benning C, Wang X and Zhao J* (2020) Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis, and hormone signaling in soybean (Glycine max). Plant Biotechnology Journal J 18:155-171.

72. Lu S#, Liu H#, Jin C, Li Q and Guo L* (2019) An Efficient and Comprehensive Plant Glycerolipids Analysis Approach Based on High-performance Liquid Chromatography-quadrupole Time of Flight Mass Spectrometer. Plant Direct 3:1-13.

73. Zhang Y#, Ali U#, Zhang G, Yu L, Fang S, Iqbal S, Li H, Lu S and Guo L* (2019) Transcriptome analysis reveals genes commonly responding to multiple abiotic stresses in rapeseed. Molecular Breeding 39:158.

74. Lu S#, Fadlalla T#, Tang S, Li L, Ali U, Li Q and Guo L* (2019) Genome-wide analysis of phospholipase D gene family and profiling of phospholipids under abiotic stresses in Brassica napus. Plant and Cell Physiology 60:1556-1566.

75. 张宇婷,鲁少平,金诚,郭亮* (2019) 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析. 作物学报 45: 381-389.

76. Li N#, *, Zhang Y#, Meng H#, Li S, Wang S, Xiao Z, Chang P, Zhang X, Li Q, Guo L, Igarashi Y and Luo F* (2019) Characterization of Fatty Acid EXporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. Biotechnology for Biofuels 12:14.

77. Xie K*, Guo L, Bai Y, Liu W, Yan J and Bucher M* (2019) Microbiomics and Plant Health: An Interdisciplinary and International Workshop on the Plant Microbiome. Molecular Plant 12: 1-3.

78. Ali U, Li H, Wang X and Guo L* (2018) Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. Molecular Plant 11: 1328-1343.

79. Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman K* and Guo L* (2018) Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Plant Journal 94: 915-932.

80. Ali M, Hussain R, Rehman N, She G, Li P, Wan X and Guo L* and Zhao J* (2018) De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage. DNA Research 25: 597-617.

81. Su Y, Li M, Guo L and Wang X* (2018) Different effects of phospholipase Dζ2 and nonspecific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant Journal 94: 315-326.

82. Zhang Q, Berkey R, Blakeslee J, Lin J, Ma X, King H, Liddle A and Guo L, Munnik T, Wang X, Xiao S* (2018) Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. Journal of Experimental Botany 69: 3675-3688.

83. Rehman N, Ali M, Ahmad M, Guo L* and Zhao J* (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbial Pathogenesis 114: 420-430.

84. Zhang Q, Song P, Qu Y, Wang P, Jia Q, Guo L, Zhang C, Mao T, Yuan M, Wang X and Zhang W* (2017) Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant, Cell & Environment 40: 2220-2235.

85. Wei F, Fanella B, Guo L* and Wang X* (2016) Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Scientific Reports 6: 36172.

86. Hong Y*, Zhao J*, Guo L, Kim S, Deng X, Wang G, Zhang G, Li M and Wang X* (2016) Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research 62: 55-74.

87. Lu S*, Yao S, Wang G, Guo L, Zhou Y, Hong Y and Wang X* (2016) Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability. Plant Biotechnology Journal 14:926-937.

88. Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C and Zhou Y* (2016) Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Scientific Reports 6:19007.

89. Guo L, Ma F, Wei F, Fanella B, Allen D and Wang X* (2014) Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Arabidopsis Cellular Metabolism and Promotes Seed Oil Accumulation. Plant Cell 26:3023-3035.

90. Wang X, Guo L, Wang G and Li M (2014) PLD: Phospholipase Ds in Plant Signaling, Phospholipases in Plant Signaling, Springer: 3-26 (Book chapter).

91. Yao H, Wang G, Guo L and Wang X* (2013) Phosphatidic Acid Interacts with WEREWOLF MYB and Regulates Its Nuclear Localization and Function in Arabidopsis. Plant Cell 25:5030-5042.

92. Kim S, Guo L and Wang X* (2013) Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphase dehydrogenase and promotes its cleavage in Arabidopsis. J Biol Chem 288:11834-11844.

93. Guo L, Devaiah S, Narasimhan R, Pan X, Zhang Y, Zhang W and Wang X* (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in stress response in Arabidopsis. Plant Cell 24:2200-2212.

94. Guo L, Mishra G, Markham J, Li M, Tawfall A, Welti R and Wang X* (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286-8296.

95. Guo L and Wang X* (2012) Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Frontiers in Plant Science 3:1-7.

96. Guo L, Mishra G, Taylor K and Wang X* (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286:13336-13345.

97. Li M, Bahn S, Guo L, Musgrave W, Berg H, Welti R and Wang X* (2011) Patatin-related phospholipase pPLAIIIbeta-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell 23:1107-1123.

98. Guo L, Qing R, He W, Xu Y, Tang L, Wang S and Chen F* (2008) Identification and characterization of a plastidial ω3-fatty acid desaturase gene from Jatrophacurcas. Chin J Appl Environ Biol 14:469-474.

99. Niu B, Guo L, Zhao M, Luo T, Zhang R, Zhang F, Hou P, Zhang Y, Xu Y, Wang S and Chen F* (2008) Molecular cloning, characterization, and expression of an ω-3 fatty acid desaturase gene from Sapium sebiferum. J Biosci Bioeng 106:375-380.

100. 何玮,郭亮,王岚,杨威,唐琳,陈放* (2007) 麻疯树种质资源遗传多样性的 ISSR 分析. 应用与环境生物学报 13: 466-470.

101. Xiao M, Li Q, Wang L, Guo L, Li J, Tang L, Xu Y and Chen F* (2006) ISSR analysis of genetic diversity and genetic structure in natural populations of an endangered species Sinopodophyllum hexandrum (Royle) Ying from the Tibetan region of Sichuan province, China. J Integr Plant Biol 48:1140-1146.

102. Xiao M, Li Q, Guo L, Luo T, He W, Wang L and Chen F* (2006) AFLP analysis of genetic diversity of the endangered species Sinopodophyllum hexandrum (Royle) Ying in the Tibetan region of Sichuan province, China. Biochemical Genetics 44:47-60.

103. Li Q, Xiao M, Guo L, Wang L, Tang L, Xu Y, Yan F and Chen F* (2005) Genetic diversity and genetic structure of an endangered species, Trillium tschonoskii. Biochemical Genetics 43:445-458.

104. 李群,肖猛,郭亮,李静,段文霞,陈放*,王丽 (2005) 四川省珍稀濒危植物延龄草遗传多样性分析. 北京林业大学学报 27:1-6.

105. 戎芳,王胜华,赵小光,郭亮,魏琴,唐琳,徐莺,陈放* (2005) 麻疯树外植体愈伤组织中毒蛋白的 Westem-blot 鉴定. 四川大学学报: 42:206-209.

教育经历

[1] 2006.8——2011.12
美国密苏里大学圣路易斯校区 > 博士 > 博士
[2] 2004.9——2008.6
四川大学 > 理学硕士学位 > 理学硕士学位
[3] 2001.9——2004.7
四川大学 > 理学学士学位 > 理学学士学位

工作经历

[1] 2014.10-至今
华中农业大学植物科学技术学院
教学科研 

[2] 2012.3-2014.9
美国密苏里大学圣路易斯校区
博士后