戴成
邮编:
通讯/办公地址:
戴成 民盟盟员 博士 硕士生导师
电子邮箱:cdai@mail.hzau.edu.cn
工作情况:
2015.3-至今 华中农业大学 植物科技学院
2013.09-2014.10 美国宾州州立大学 博士后
2010.11-2013.08 美国马里兰大学 博士后
教育背景:
2004.09-2010.06 中科院植物生理生态研究所 研究生/博士 专业:遗传学
2000.09-2004.06 安徽师范大学 本科/学士 专业:生物科学
研究方向:
(1)油菜自交不亲和的分子机制
(2)油菜激素信号通路分子机制
研究成果:
1)建立高效的油菜CRISPR/Cas9基因编辑系统,对其在油菜中基因编辑的效率、编辑的特点以及后代遗传规律进行系统研究。
油菜是我国重要的油料作物,油菜基因组序列公布以来,调控油菜重要农艺性状相关基因的功能研究凸显重要。与经典的定位基因的方法相比,CRISPR/Cas9基因编辑技术可以高效稳定的创制突变体,用于功能基因组学的研究。我们首次将CRISPR/Cas9基因编辑系统引入油菜基因功能研究,系统的评价了基因编辑效率、编辑特点以及后代遗传规律。同时创制大量的油菜突变体,为油菜基因功能研究和遗传改良提供材料 (Yang et al., 2017)。同时,我们在原有的CRISPR/Cas9基因组编辑载体上导入荧光蛋白GFP。在拟南芥、油菜、大豆和草莓中的转化结果表明,利用GFP荧光筛选,提高了转基因植株的鉴定效率;同时,后代中不含有转基因标签的植株也可以利用GFP信号进行筛选。该系统编辑效率高,适用范围广,可以广泛应用于其他作物突变体的创制工作中 (Tang et al., 2018)。
2)油菜自交不亲和分子机制研究。
自交不亲和(Self-incompatibility)是显花植物促进异交,防止自交衰退的一种重要机制。利用同源克隆的方法,我们获得了油菜MLPK的同源基因,对其功能验证表明,MLPK是油菜自交不亲和的正调控因子(Chen et al., 2019);利用蛋白磷酸化组学,我们分析在在油菜亲和/不亲和授粉前后蛋白磷酸化水平的变化,从中我们筛选出一些可能的调控因子,为后续解析SCR-SRK介导的油菜自交不亲和信号途径奠定了坚实的基础 (Duan et al., 2020a)。
ZML1亚家族是GATA转录因子家族的重要成员。通过对转录组数据及qRT-PCR数据分析发现,亲和授粉诱导BnaA5.ZML1表达。在自交不亲和材料“W-3”过表达BnaA5.ZML1可以部分的打破自交不亲和;利用CRISPR/Cas9敲除BnaA5.ZML1则会影响亲和反应。说明BnaA5.ZML1是一个亲和因子。进一步的结果表明,自交不亲和的正调控因子SRK和ARC1的表达量在BnaA5.ZML1过表达材料中下调表达,而在突变体材料中上调表达;双荧光素酶实验验证了BnaA5.ZML1抑制了SRK及ARC1的表达。蛋白水平的研究结果发现,BnaA5.ZML1与SRK的激酶区域互作,促使BnaA5.ZML1在细胞质中富集(Duan et al., 2020b) 。此外,利用基因编辑的方法,我们创建了新的甘蓝型油菜自交不亲和系(Dou et al., 2021),为后续甘蓝型油菜自交不亲和系分子机制研究奠定了重要的基础。
3)赤霉素信号负调控因子BnaRGA对甘蓝型油菜农艺性状调控的分子机制研究。
在检测甘蓝型油菜不同种质资源的抗旱性时,我们发现赤霉素信号负调控因子BnaRGA同源拷贝基因BnaC07.RGA和BnaA06.RGA功能获得型突变体ds-3和bnaa06.rga-D在苗期的抗旱能力显著提高;同时利用CRISPR/Cas9创制的RGA功能缺失型四突变体bnarga表现对干旱处理更加敏感。利用BnaA06.RGA为诱饵蛋白筛选酵母双杂交文库,获得了一个与BnaA06.RGA互作的蛋白,序列比对结果显示该蛋白是拟南芥ABF2在油菜中的同源基因BnaA10.ABF2。进一步实验证明,RGA四个同源拷贝基因与油菜BnaA10.ABF2编码的蛋白两两互作,调控ABF2下游干旱响应基因的表达水平 (Wu et al., 2020)。
对BnaRGA的突变体种子含油量测定后发现,BnaC07.RGA和BnaA06.RGA功能获得型突变体ds-3和bnaa06.rga-D种子中含油量显著下降,功能缺失型四突变体bnarga在种子发育早期表现出显著上升。同时发现,种子中有关脂肪酸合成和降解途径相关基因的表达显著发生变化。进一步研究表明,RGA蛋白通过与LEC1蛋白互作调控油菜脂肪酸的合成与降解(Yan et al., 2021)。
获奖情况:
2019年获华中农业大学“优秀研究生论文指导奖”
2010学年获“中科院院长奖学金”
第一作者或通讯作者发表论文与专著:
1. Wang, L., Liang, X., Dou, S. Yi B., Fu T., Ma C., Dai C. Two aspartic proteases, BnaAP36s and BnaAP39s, regulate pollen tube guidance in Brassica napus. Mol Breeding 2023 43 (27). https://doi.org/10.1007/s11032-023-01377-1.
2. Tian X, Yu X, Wang Z, Guo L, Tu J, Shen J, Yi B, Fu T, Wen J, Ma C, Dai C. BnaMPK3s promote organ size by interacting with BnaARF2s in Brassica napus. Plant Biotechnol J. 2023 May;21(5):899-901. doi: 10.1111/pbi.14013.
3. Quan C, Li Y, Chen G, Tian X, Jia Z, Tu J, Shen J, Yi B, Fu T, Ma C, Dai C. The dynamics of lncRNAs transcription in interspecific F1 allotriploid hybrids between Brassica species. Genomics. 2022 Oct 17;114(6):110505. doi: 10.1016/j.ygeno.2022.110505.
4. Quan C, Chen G, Li S, Jia Z, Yu P, Tu J, Shen J, Yi B, Fu T, Dai C*, Ma C*. Transcriptome shock in interspecific F1 allotriploid hybrids between Brassica species. J Exp Bot. 2022 Apr 18;73(8):2336-2353. doi: 10.1093/jxb/erac047.
5. Liu Z, Li B, Yang Y, Gao C, Yi B, Wen J, Shen J, Tu J, Fu T, Dai C*, Ma C*. Characterization of a Common S Haplotype BnS-6 in the Self-Incompatibility of Brassica napus. Plants (Basel). 2021 Oct 15;10(10):2186. doi: 10.3390/plants10102186.
6. Liu D, Yu L, Wei L, Yu P, Wang J, Hu Z, Zhang Y, Zhang S, Yang Z, Chen G, Yao X, Yang Y, Zhou Y, Wang X, Lu S*, Dai C*, Yang QY*, Guo L*. BnTIR: an online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus. Plant Biotechnol J. 2021 Jul 14. doi: 10.1111/pbi.13665.
7. Yan G, Yu P, Tian X, Guo L, Tu J, Shen J, Yi B, Fu T, Wen J, Liu K, Ma C*, Dai C*. (2021) DELLA Proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napus. Plant Biotechnol J. 2021 May 13. doi: 10.1111/pbi.13628.
8. Dou S, Zhang T, Tu J, Shen J, Yi B, Wen J, Fu T, Dai C*, Ma C*. Generation of novel self-incompatible Brassica napus by CRISPR/Cas9. Plant Biotechnol J. 2021 Mar 3. doi: 10.1111/pbi.13577.
9. Dai, C and Ma, C An Effective CRISPR/Cas9 Technology for Efficiently Isolating Transgene-Free Mutants in Arabidopsis, Brassica napus, Strawberry, and Soybean. Springer Protocols Handbooks (Chapter 7).
10. Wu, J. #, Yan, G. #, Duan, Z., Wang, Z., Kang, C., Guo, L., Liu, K., Tu, J., Shen, J., Yi, B., Fu, T., Li, X., Ma, C*. and Dai, C*. (2020) Roles of the Brassica napus DELLA Protein BnaA6.RGA, in Modulating Drought Tolerance by Interacting With the ABA Signaling Component BnaA10.ABF2. Front Plant Sci 11, 577.
11. Duan Z, Dou S, Liu Z, Li B, Yi B, Shen J, Tu J, Fu T, Dai C*, Ma C* (2020) Comparative phosphoproteomic analysis of compatible and incompatible pollination in Brassica napus L. Acta Biochim Biophys Sin (Shanghai)
12. Duan Z, Zhang Y, Tu J, Shen J, Yi B, Fu T, Dai C*, Ma C* (2020) The Brassica napus GATA transcription factor BnA5.ZML1 is a stigma compatibility factor. J Integr Plant Biol. 2020 Aug;62(8):1112-1131. doi: 10.1111/jipb.12916.
13. Dai C., Li Y., Li L., Du Z. Lin S., Tian X., Li S., Yang B., Yao W., Wang J., Guo L., Lu S. (2020) An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breeding (2020) 40: 96
14. Chen F, Yang Y, Li B, Liu Z, Khan F, Zhang T, Zhou G, Tu J, Shen J, Yi B, Fu T, Dai C*, Ma C*. Functional Analysis of M-Locus Protein Kinase Revealed a Novel Regulatory Mechanism of Self-Incompatibility in Brassica napus L. Int J Mol Sci. 2019 Jul 5;20(13). pii: E3303. doi: 10.3390/ijms20133303.
15. Tang T, Yu X, Yang H, Gao Q, Ji H, Wang Y, Yan G, Peng Y, Luo H, Liu K, Li X, Ma C, Kang C, Dai C. Development and Validation of an Effective CRISPR/Cas9 Vector for Efficiently Isolating Positive Transformants and Transgene-Free Mutants in a Wide Range of Plant Species. Front Plant Sci. 2018 Oct 23;9:1533. doi: 10.3389/fpls.2018.01533. eCollection 2018.
16. Dai C*, Lee Y, Lee IC, Nam HG, Kwak JM*. Calmodulin 1 Regulates Senescence and ABA Response in Arabidopsis. Front Plant Sci. 2018 Jul 2;9:803. doi: 10.3389/fpls.2018.00803. eCollection 2018.
17. Yang Y, Liu Z, Zhang T, Zhou G, Duan Z, Li B, Dou S, Liang X, Tu J, Shen J, Yi B, Fu T, Dai C*, Ma C*. Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in Brassica napus L. Int J Mol Sci. 2018 Jun 3; 19(6). pii: E1652. doi: 10.3390/ijms19061652.
18. Koo JC#, Lee IC#, Dai C#, Lee Y#, Cho HK, Kim Y, Phee BK, Kim H, Lee IH, Choi SH, Park SJ, Jeon IS, Nam HG, Kwak JM. The Protein Trio RPK1-CaM4-RbohF Mediates Transient Superoxide Production to Trigger Age-Dependent Cell Death in Arabidopsis. Cell Reports. 2017 Dec 19;21(12):3373-3380. doi: 10.1016/j.celrep.2017.11.077.
19. Yang H, Wu JJ, Tang T, Liu KD*, Dai C*. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep. 2017 Aug 8;7(1):7489. doi: 10.1038/s41598-017-07871-9.
20. Dai C, Xue HW. Rice EARLY FLOWERING1, a CKI, Phosphorylates DELLA Protein SLR1 to Negatively Regulate Gibberellin Signaling. The EMBO Journal. 06/2010; 29(11):1916-27.
共同作者发表论文:
1. Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang QY. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Mol Plant. 2023 Apr 3;16(4):775-789. doi: 10.1016/j.molp.2023.03.007.
2. Huang J, Yang L, Yang L, Wu X, Cui X, Zhang L, Hui J, Zhao Y, Yang H, Liu S, Xu Q, Pang M, Guo X, Cao Y, Chen Y, Ren X, Lv J, Yu J, Ding J, Xu G, Wang N, Wei X, Lin Q, Yuan Y, Zhang X, Ma C, Dai C, Wang P, Wang Y, Cheng F, Zeng W, Palanivelu R, Wu HM, Zhang X, Cheung AY, Duan Q. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature. 2023 Jan 25. doi: 10.1038/s41586-022-05640-x.
3. Farooq Z, Nouman Riaz M, Farooq MS, Li Y, Wang H, Ahmad M, Tu J, Ma C, Dai C, Wen J, Shen J, Fu T, Yang S, Wang B, Yi B. Induction of Male Sterility by Targeted Mutation of a Restorer-of-Fertility Gene with CRISPR/Cas9-Mediated Genome Editing in Brassica napus L. Plants (Basel). 2022 Dec 13;11(24):3501. doi: 10.3390/plants11243501.
4. Qin P, Gao J, Shen W, Wu Z, Dai C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. BnaCRCs with domestication preference positively correlate with the seed-setting rate of canola. Plant J. 2022 Sep;111(6):1717-1731. doi: 10.1111/tpj.15919.
5. Xiao Q, Wang H, Song N, Yu Z, Imran K, Xie W, Qiu S, Zhou F, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. The Bnapus50K array: a quick and versatile genotyping tool for Brassica napus genomic breeding and research. G3 (Bethesda). 2021 Sep 27;11(10): jkab241. doi: 10.1093/g3journal/jkab241.
6. Liu J, Zhu L, Wang B, Wang H, Khan I, Zhang S, Wen J, Ma C, Dai C, Tu J, Shen J, Yi B, Fu T. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. Theor Appl Genet. 2021 Jun 12. doi: 10.1007/s00122-021-03879-y.
7. Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, Guo WW, Wu XM, Kang C. (2021) GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. Plant Physiol. 2021 Apr 23; kiab184. doi: 10.1093/plphys/kiab184.
8. Wang H, Xiao Q, Wei C, Chen H, Chen X, Dai C, Wen J, Ma C, Tu J, Fu T, Shen J, Yi B. (2021) A mitochondria-localized pentatricopeptide repeat protein is required to restore hau cytoplasmic male sterility in Brassica napus. Theor Appl Genet. 2021 May;134(5):1377-1386. doi: 10.1007/s00122-021-03777-3.
9. Wang B, Farooq Z, Chu L, Liu J, Wang H, Guo J, Tu J, Ma C, Dai C, Wen J, Shen J, Fu T, Yi B. (2021) High-generation near-isogenic lines combined with multi-omics to study the mechanism of polima cytoplasmic male sterility. BMC Plant Biol. 2021 Mar 5;21(1):130. doi: 10.1186/s12870-021-02852-7.
10. Sriboon, S., Li, H., Guo, C., Senkhamwong, T., Dai, C. and Liu, K. (2020) Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napus. BMC Genet 21, 52.
11. Zhang, T., Zhou, G., Goring, D.R., Liang, X., Macgregor, S., Dai, C., Wen, J., Yi, B., Shen, J., Tu, J., Fu, T. and Ma, C. (2019) Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. Plants (Basel) 8.
12. Li Y, Feng J, Cheng L, Dai C, Gao Q, Liu Z, Kang C (2019) Gene Expression Profiling of the Shoot Meristematic Tissues in Woodland Strawberry Fragaria vesca. Front Plant Sci 10: 1624
13. Feng J, Dai C, Luo H, Han Y, Liu Z, Kang C. (2019) Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. J Exp Bot. 2019 Jan 7;70(2):563-574. doi: 10.1093/jxb/ery384.
14. Luo H, Dai C, Li Y, Feng J, Liu Z, Kang C. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. J Exp Bot. 2018 Apr 27;69(10):2595-2608. doi: 10.1093/jxb/ery096.
15. Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theor Appl Genet. 2017 Apr;130(4):727-741. doi: 10.1007/s00122-016-2846-4. Epub 2017 Jan 16.
16. Li Y, Dai C, Hu C, Liu Z, Kang C. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J. 2017 Apr;90(1):164-176. doi: 10.1111/tpj.13462. Epub 2017 Feb 11.
17. Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings. Current Biology. 2014 Aug 18;24(16):1887-92. doi: 10.1016/j.cub.2014.06.064.
18. Tan ST, Dai C, Liu HT, Xue HW. Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. Plant Cell. 2013 Jul;25(7):2618-32. doi: 10.1105/tpc.113.114322.
19. Wen BQ, Xing MQ, Zhang H, Dai C, Xue HW. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1. J Integr Plant Biol. 09/2011; 53(11):869-78.
会议报告
1. 2023年4月 第三届油菜生物学研讨会,武汉,口头报告
" 甘蓝型油菜自交亲和机制研究"
2. 2019年12月 第一届油菜生物学研讨会,武汉,口头报告
" DELLA蛋白调控油菜抗旱机制研究"
3. 2019年6月15TH INTERNATIONAL RAPESEED CONGRESS, 柏林,口头报告
"CRISPR/Cas9-mediated genome editing efficiently creates specific mutations in Brassica napus."
4. 2017年12月 中国科协第338次青年科学家论坛,武汉, 口头报告
"CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus."
5. 2014年6月Midwest Plant Cell Dynamics Annual Meeting,威斯康辛,口头报告
"Identification of proteins interacting with the receptor-like kinase FERONIA."
6. 2013年7月ASPB Plant Biology Annual Meeting,罗德岛,Poster
"Production and Endocytosis of Superoxide Endosomes Trigger Age-Dependent Cell Death in Arabidopsis".
7. 2011年4月Mid-Atlantic Section ASPB Annual Spring Meeting,马里兰,口头报告
"Effects and functional mechanism of rice EL1, a casein kinase I, in gibberellin acid signaling."