访问量:   最后更新时间:--

陈夕子

硕士生导师
教师姓名:陈夕子
教师英文名称:Xizi Chen
教师拼音名称:chenxizi
职务:专任教师
主要任职:专任教师
职称:副研究员
在职信息:在职
学历:博士
学位:博士学位
办公地点:华中农业大学第一综合楼B座413
电子邮箱:
毕业院校:香港科技大学
所属院系:信息学院
所在单位:信息学院
学科:计算机系统结构    计算机应用技术    
其他联系方式

通讯/办公地址:

论文成果
Tight Compression: Compressing CNN Model Tightly Through Unstructured Pruning and Simulated Annealing Based Permutation
发布时间:2021-09-08    点击次数:

DOI码:10.1109/DAC18072.2020.9218701

所属单位:The Hong Kong University of Science and Technology (HKUST)

发表刊物:57th Design Automation Conference (DAC,CCF-A类)

关键字:Convolutional Neural Network (CNN), pruning, weight sparsity, model compression

摘要:The unstructured sparsity after pruning poses a challenge to the efficient implementation of deep learning models in existing regular architectures like systolic arrays. The coarse-grained structured pruning, on the other hand, tends to have higher accuracy loss than unstructured pruning when the pruned models are of the same size. In this work, we propose a compression method based on the unstructured pruning and a novel weight permutation scheme. Through permutation, the sparse weight matrix is further compressed to a small and dense format to make full use of the hardware resources. Compared to the state-of-theart works, the matrix compression rate is effectively improved from 5.88x to 10.28x. As a result, the throughput and energy efficiency are improved by 2.12 and 1.57 times, respectively.

备注:中国计算机学会 CCF-A 类

合写作者:Jingyang Zhu,Jingbo Jiang,Chi-Ying Tsui

第一作者:Xizi Chen

是否译文:

发表时间:2020-01-01