Click:   The Last Update Time:--

Daojun Yuan

Supervisor of Master's Candidates
Name (Simplified Chinese):Daojun Yuan
Name (English):Daojun Yuan
Name (Pinyin):Yuan Daojun
Academic Titles:Associate Professor
Professional Title:Associate professor
Status:Employed
Education Level:With Certificate of Graduation for Doctorate Study
Degree:Doctoral degree
Business Address:https://cotton.hzau.edu.cn/
E-Mail:
Alma Mater:Huazhong Agricultural University
Teacher College:College of Plant Sciences & Technology
School/Department:College of Plant Science and Technology
Discipline:Crop Genetics and Breeding    
Other Contact Information:

ZipCode:

Fax:

PostalAddress:

OfficePhone:

Email:

Paper Publications
Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense
Release time:2022-05-10    Hits:

Impact Factor:27.603

Journal:Nature Genetics

Abstract:Allotetraploid cotton species (Gossypium hirsutum and Gossypium barbadense) have long been cultivated worldwide for natural renewable textile fibers. The draft genome sequences of both species are available but they are highly fragmented and incomplete1,2,3,4. Here we report reference-grade genome assemblies and annotations for G. hirsutum accession Texas Marker-1 (TM-1) and G. barbadense accession 3–79 by integrating single-molecule real-time sequencing, BioNano optical mapping and high-throughput chromosome conformation capture techniques. Compared with previous assembled draft genomes1,3, these genome sequences show considerable improvements in contiguity and completeness for regions with high content of repeats such as centromeres. Comparative genomics analyses identify extensive structural variations that probably occurred after polyploidization, highlighted by large paracentric/pericentric inversions in 14 chromosomes. We constructed an introgression line population to introduce favorable chromosome segments from G. barbadense to G. hirsutum, allowing us to identify 13 quantitative trait loci associated with superior fiber quality. These resources will accelerate evolutionary and functional genomic studies in cotton and inform future breeding programs for fiber improvement.

Indexed by:Journal paper

Volume:51

Issue:2

Page Number:224–229

Translation or Not:no

Date of Publication:2019-02-14

Included Journals:SCI

Links to published journals:https://www.nature.com/articles/s41588-018-0282-x

Attachments:

s41588-018-0282-x.pdf