访问量:   最后更新时间:--

胡学海

博士生导师
硕士生导师
教师姓名:胡学海
教师拼音名称:huxuehai
职务:大数据系系主任
职称:教授
学历:博士研究生毕业
学位:理学博士学位
办公地点:逸夫楼C609
电子邮箱:
毕业院校:武汉大学
所属院系:信息学院
所在单位:信息学院
学科:统计学其他专业    生物信息学    
其他联系方式
论文成果
Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human
发布时间:2021-04-30    点击次数:

影响因子:4.556

DOI码:10.3390/ijms18020420

发表刊物:International Journal of Molecular Sciences,

关键字:DNA methylation; predicted model; sequence complexity

摘要:DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species redictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the xperimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation.

论文类型:期刊论文

卷号:18

页面范围:420

是否译文:

发表时间:2017-01-01

收录刊物:SCI