
Social Science & Medicine 356 (2024) 117155

Available online 26 July 2024
0277-9536/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Assessing the accuracy of self-reported health expenditure data: Evidence
from two public surveys in China

Zhuang Hao , Xudong Zhang , Yuze Wang *

College of Economics and Management, Huazhong Agricultural University, Wuhan, 430070, China

A R T I C L E I N F O

Handling Editor: Joanna Coast

JEL classification:
C19
C81
C83
I10
Keywords:
Health expenditure
Data quality
Benford’s law
Public survey

A B S T R A C T

This paper utilizes Benford’s law, the distribution that the first significant digit of numbers in certain datasets
should follow, to assess the accuracy of self-reported health expenditure data known for measurement errors. We
provide both simulation and real data evidence supporting the validity assumption that genuine health expen-
diture data conform to Benford’s law. We then conduct a Benford analysis of health expenditure variables from
two widely utilized public datasets, the China Health and Nutrition Survey and the China Family Panel Studies.
Our findings show that health expenditure data in both datasets exhibit inconsistencies with Benford’s law, with
the former dataset tending to be less prone to reporting errors. These results remain robust while accounting for
variations in survey design, recall periods, and sample sizes. Moreover, we demonstrate that data accuracy
improves with a shorter time interval between hospitalization and interviews, when the data is self-reported as
opposed to proxy responses, and at the household level. We find no compelling evidence that enumerators’
assessments of respondents’ credibility or urgency to end interviews are indicative of data accuracy. This paper
contributes to literature by introducing an easy-to-implement analytical framework for scrutinizing and
comparing the reporting accuracy of health expenditure data.

1. Introduction

Over the past twenty years, there has been a remarkable surge in
demand for medical services around the world, attributable to various
factors such as the pandemics, the gradual expansion and increased
generosity of health insurance coverage, rising income levels, an ageing
population, the widespread adoption of medical technology, and shifts
in the disease spectrum. In 2020, global health spending reached US$ 9
trillion, which accounted for more than 10% of global GDP.1 Publicly
accessible survey data have emerged as the primary data source for
research related to the utilization and expenditure of health care and
services, providing a foundation basis for evaluating health policies and
aiding government oversight of the healthcare system.

In the Chinese context, per capita medical expenditure has signifi-
cantly increased, rising from US$ 111 in 2000 to US$ 671 in 2021.2

Health economics and policy studies on rapidly growing health expen-
diture and utilization have relied on large-scale surveys in China and
two prominent publicly accessible datasets are the China Health and
Nutrition Survey (CHNS) and the China Family Panel Studies (CFPS).
These surveys offer nationally representative and comprehensive in-
formation on individual utilization and expenditure of health care and
services compared to other public surveys.3 The CHNS is a compre-
hensive database that aims to examine the impact of social and eco-
nomic transformation of Chinese society on the health and nutritional
status of its population. It collects data on participants’ health expen-
ditures over the previous four weeks, including precise amounts spent
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1 Global health spending was retrieved from the World Health Organization report of Global Spending on Health at https://www.who.int/publications/i/item/9
789240064911.
2 Annual health expenditure per capita was inflation-adjusted to the current US dollar of 2021 and retrieved from the World Health Organization Global Health

Expenditure database at https://apps.who.int/nha/database.
3 There are other public surveys available for health-related information, but they are either less representative of the entire population or record less information
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Survey (CLHLS) focus on the middle-aged and elderly population; China Household Finance Survey (CHFS) records less information about the utilization of
healthcare services.
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on health care and services. The survey also gathers information on
participants’ socioeconomic status, demographic characteristics, and
geographic location, all essential for analyzing expenditure data. In
comparison, the CFPS collects data on a broader array of topics from a
greater number of provinces but lacks the same granularity as the CHNS
concerning health expenditures. For example, the CFPS only captures
data related to hospitalization expenses over the preceding 12-month
period, excluding outpatient care and preventative care costs. Addi-
tionally, the CFPS employs well-designed sample weights, enhancing the
representativeness and generalizability of estimates and findings using
its data.

Researchers have used these datasets to enhance comprehension of
the factors influencing healthcare spending (Shi et al., 2021; Fu et al.,
2022; Si and Chu, 2022). Moreover, the CHNS and CFPS have become
the most prevalent datasets to quantify disparities in health expenditure
across the lifespan (Feng et al., 2015), residential status and income (Yip
et al., 2019), and the impacts of various health conditions such as
influenza (Liu et al., 2012), depression (Hsieh and Qin, 2018), and
extreme temperature (Li et al., 2023). Furthermore, these datasets have
also been employed to evaluate the effects of health insurance coverage
and generosity on demand for healthcare services (for examples, see Lei
and Lin, 2009; Liu and Zhao, 2014; Huang and Gan, 2017; He and Nolen,
2019; Zhang et al., 2019; Zhao, 2019; Sun, 2020; Huang and Liu, 2023).
However, despite the extensive use of self-reported health expenditure
data, existing research has not given adequate attention to their accu-
racy, the extent to which the reported data aligns with the actual ex-
penses it is designated to measure.

Self-reported survey data is well known to be susceptible to mea-
surement error issues, with recall error being an extensively studied
reason. In the context of health expenditure data, the presence of recall
error can be suggested by a notable data pattern where reported values
disproportionately concentrate on certain heaped figures, such as 500
and 1000. This specific type of recall error that mistakenly rounds or
approximates values is referred to as the “heaping error”.4 Recall errors
are particularly relevant when considering self-reported health expen-
diture data, which often stems from complex past processes involving
different parties, procedures, and locations. Aside from recall error,
misunderstandings of survey questions or reluctance to provide accurate
responses can also introduce measurement errors into the data (Rosen-
man et al., 2011). The presence of measurement errors in survey data
will typically cause biased and inconsistent estimates of regression
model parameters (see Bound et al. (2001) and Schennach (2016) for
more complete reviews). This is especially troublesome when such es-
timates are used to formulate health and other social policies that have
far-reaching effects on the broader population and the allocation of
substantial budgetary resources. Estimation methods that provide
consistent estimates for both linear and nonlinear models with mea-
surement errors have been devised in the measurement error literature.
However, these methods rely on strong assumptions about the proper-
ties of the error, and require extra information in the form of either
instrumental variables or auxiliary samples to overcome the loss of in-
formation induced by the presence of measurement error (Bound et al.,
2001; Chen et al., 2011).

For health expenditure data, its accuracy is typically assessed using
external reference sources for validation, which is a benchmark
approach. An ideal approach would involve meticulous monitoring of
individual expenditures across all levels of healthcare providers,
including hospitals, clinics, and pharmacies (Lavado et al., 2013).
However, employing and integrating such rigorous external data sources
is often infeasible due to the associated costs. Designs of specific surveys

might allow for examining the data reliability using multiple indicators
of variables measured with error. For example, taking advantage of the
total health expenditure as well as specific expenses on detailed health
services in the World Health Survey, Xu et al. (2009) used the deviation
of reported total expenditure from the aggregated expenditure to assess
the expenditure data quality.

In the absence of an external gold standard or internal survey in-
formation for data validation, Benford’s law has been utilized as a
benchmark to evaluate the accuracy of self-reported data (Kaiser, 2019;
Dang and Owens, 2020). Benford’s law posits that the first significant
digit in many naturally occurring numerical sequences is more likely to
be a lower number than a larger one, and it provides specific expecta-
tions for the distribution of these digits (Benford, 1938). According to
this law, there is an expectation that natural numbers commencing with
digit 1 will manifest approximately 30% of the time. Similarly, numbers
starting with digit 2 are projected to occur for about 18% of the time.
The prevalence of leading digits progressively diminishes, with numbers
commencing with digit 9 anticipated to manifest for less than 5% of the
time. With recent advances in the knowledge about Benford’s law, Vil-
las-Boas et al. (2017) demonstrated that a diverse set of data generated
from the economic behavioral systems is widely accepted to conform to
Benford’s law.

In this paper, we utilize Benford’s law to analyze the accuracy of self-
reported health expenditure data within the context of public surveys.
We first demonstrate the applicability of Benford’s law to health
expenditure data with two pieces of evidence, one using real data and
the other using simulated data, supporting the validity assumption that
genuine health expenditure data should conform to Benford’s law. Using
the CHNS and CFPS as illustrative datasets, we show that health
expenditure data reported in neither dataset is completely consistent
with Benford’s law. However, overall, the data in the CHNS tends to be
less prone to reporting errors. These results remain robust even after
accounting for various factors, including survey design, recall periods,
and sample sizes. We further examine whether data accuracy can be
indicated by other information available in the datasets. Analysis results
suggest that a longer time interval between hospitalization and inter-
view, a proxy response by other family members, and individual-level
rather than household-level reported data are associated with lower
accuracy of data, and enumerators’ opinions about respondents cannot
indicate data accuracy.

This study makes several contributions to the literature. First, it
bridges the gap between Benford and measurement error literature by
demonstrating that deviations from Benford’s law indicate biases in
regression model parameter estimates. While most Benford studies
attempt to show their hypothetical true data should follow Benford’s law
using various methods, few have tested whether the Benford analysis
results correlate with parameter estimates of most empirical re-
searchers’ interest. This may limit the impact of the Benford analyses in
applied economics and policy studies. Our simulation results show that
greater deviations from Benford’s law are positively correlated with
larger estimation biases of regression model parameters. Second, to the
best of our knowledge, this is the first study to employ Benford’s law as a
screening tool for assessing health data. This complements health
literature by addressing challenges in acquiring reliable external vali-
dation data and facilitating comparisons across datasets with different
designs, such as survey scales and recall periods. The assessment
framework can be particularly useful in less developed countries where
obtaining accurate administrative records for validation is often less
feasible. Finally, this study provides new evidence on potential in-
dicators of misreporting in health expenditure data, which may inform
future survey designs for health expenditure.

The paper is organized in the following way. Section 2 describes the
analysis strategy. Section 3 documents health expenditure measures in
the CHNS and CFPS. Section 4 discusses the main results, checks for
robustness, and examines potential indicators of data accuracy. Section
5 concludes the paper.

4 It is well documented that heaping is a common type of recall error in self-
reported consumption and expenditure data, of which many values dispropor-
tionately concentrate on certain figures, such as multiples of numbers with the
FSD of 5 (Browning et al., 2003; Paulin and Krishnamurty, 2018).
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2. Benford Analysis

2.1. Analytical challenges

Ideally, an accurate, uniform external data source would serve as a
gold standard for health data validation.5 Such sources could include
detailed insurance claims data or hospital administrative records, which
are less prone to reporting bias. For example, Kjellsson et al. (2014)
compared the self-reported number of hospitalized nights to registered
data for assessing the impact of the length of recall periods on data
quality. However, obtaining registered data serving as a gold standard
can be prohibitively costly in most cases. To evaluate the accuracy of
health expenditure data without a gold standard, researchers often turn
to features of the survey design to assess data quality based on internal
consistency. For example, Xu et al. (2009) utilized two types of
test-retest procedures to evaluate the consistency of reported health
expenditure within the World Health Survey. One test-retest compared
the reported expenses in the original survey to the reported expenses in a
follow-up survey, and the other compared the reported total health
expenditure to the calculated total health expenses by summing reported
expenses on detailed categories. However, these approaches rely heavily
on the unique structure and design of the survey.

When working with datasets like the CHNS and CFPS, which cover
multiple provinces and years, it is challenging to obtain a uniform
external data source for validation. Furthermore, the design of both
surveys does not readily support test-retest procedures for assessing
internal consistency in health expenditure data. Moreover, the two
datasets differ in terms of the survey areas, years and recall periods used
for health expenditure data, which makes it less intuitive to compare the
two datasets directly. These challenges call for alternative approaches
for evaluating data accuracy.

2.2. Benford’s law

In light of these analytical challenges, we turn to Benford’s law,
which has been used to assess data quality, particularly its accuracy, in
various fields. In his seminal work, Frank Benford (1938) stated that for
many real-world sets of numerical datasets, the first significant digit
(FSD) is more likely to be small rather than large, following a specific
distribution (hereafter, denoted by Benford distribution). The proba-
bility of observing the first significant digit, d, should be approximately
equal to log10(d + 1) − log10(d). According to the law, the number 1
appears as the first significant digit about 30.1% of the time, while the
number 9 appears as the maximum significant digit for only 4.6% of the
time. Benford distribution is presented in Panel A of Table A4. Several
satisfactory explanations of Benford’s law were detailed in the work of
Boyle (1994) and Hill (1995), and a recent summary of the mathemat-
ical intuition underlying Benford’s law was discussed by Dang and
Owens (2020).

Benford’s law was initially applied to naturally generated data se-
quences, such as address numbers, molecular weights, and areas of
rivers (for a survey, see Miller, 2015). By contrast, certain types of nu-
merical sequences disobey Benford’s law. Such examples include data
with limited values (e.g., telephone numbers in a given region with the
same area codes), sequentially assigned numbers (e.g., Student ID), and
human thought-influenced numbers (e.g., the price set by psychological
threshold like $9.99) (Durtschi et al., 2004; Schräpler, 2011). With
recent advances in the knowledge about Benford’s law, its applications
have been extended to economics and social sciences. Villas-Boas et al.

(2017) demonstrated that Benford’s law is frequently observed in eco-
nomic and behavioral systems, particularly in tax returns (Nigrini,
1996), macroeconomic measures (Gonzalez-Garcia and Pastor, 2009),
household income and individual earnings (Kaiser, 2019), expenses and
revenues of organizations (Dang and Owens, 2020), industrial output at
the city level (Huang et al., 2020), and household food consumption
(Abate et al., 2023). Numerical sequences that result from the mathe-
matical combination of numbers (e.g., the product of price and quantity)
and the transaction level data (e.g., payments) would be particularly
expected to conform to Benford’s law.

Existing studies have provided various explanations and proofs of the
convergence of a random variable to Benford distribution. Boyle (1994)
showed that a random variable asymptotically converges to Benford
distribution as a consequence of underlying multiplicative operations.
Hill (1995) outlined conditions for the application of Benford’s law to
data and emphasized that for samples randomly taken from a set of
random distributions, the resultant FSD of all numbers would follow the
Benford distribution. Wallace (2002) discussed the statistical criterion of
adherence to Benford’s law that the data is right-skewed and the mean is
higher than the median. It follows that the larger the ratio of the mean
divided by the median, the more closely the dataset will follow Ben-
ford’s law. Clementi and Gallegati (2005) stated that among common
distributions, the log-normally distributed economic data (e.g., income
or expenditure) tends to conform to Benford’s law.

2.3. Testing Benford’s law

Two primary methods are commonly employed to assess the accu-
racy using Benford’s law in the existing literature: the statistical testing
of the hypothesis concerning the equality between the observed FSD
distribution and the Benford distribution, and the statistical measure of
the deviation of the observed FSD distribution from the Benford distri-
bution. More specifically, the first method involves conducting infer-
ential tests to determine the extent to which the observed FSD
distribution conforms to Benford’s law. The null hypothesis of the joint
test is as follows:

H0 : p∗(di)= p(di), for di ∈ {1,2,…,9}

where, p∗(di) denotes the observed probability of the FSD, di, and
p(di) = log10(di +1) − log10(di) is the theoretical probability of di under
Benford’s law.6 If the null hypothesis gets rejected, the reliability of the
data warrants further consideration.

We first employ two classic goodness-of-fit tests: the Pearson’s Chi-
square (χ2) test and the Kuiper’s modified Kolmogorov-Smirnov test.
The χ2 statistic is calculated as

χ2 ≡ N
∑9

di=1

[p∗(di) − p(di)]
2

p(di)

where, N is the total number of non-zero health expenditure reported in
the analysis sample and the degree of freedom is eight. χ2 test serves to
evaluate the goodness of fit between the observed FSD distribution and
the theoretical Benford distribution. However, it is sensitive to sample
size, meaning that in cases of a large sample, even minor differences

5 Accuracy of data refers to the extent to which the reported data aligns with
the true data. A uniform external data source ensures standardized data records
across different contexts or institutions (e.g., all levels of healthcare providers,
including hospitals, clinics, and pharmacies), enabling reliable analyses and
providing comprehensive information.

6 The application of Benford’s law has been extended to the first two sig-
nificant digits (Barney and Schulzke, 2016). Like many others, we focus on
testing the FSD mainly because of the limitation of the sample size posed by the
first two-digit test. Nigrini (2012) suggested a “general rule” for testing the first
two digits that at least 1000 observations are required for “good conformity”
and 3000 should provide a “good” fit. Testing FSD can be performed with a
sample size of around 100, which will greatly enhance the applicability of the
Benford analysis. Given that in our surveys, the recall period of health expen-
diture data is only two or four weeks, the low incidence of health expenditure
will limit the application of testing the first two digits.
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between the two distributions can appear statistically significant.7 The
critical values at 1%, 5%, and 10% significant levels for χ2 test are 20.09,
15.51, and 13.36. In line with Judge and Schechter (2009), we also
employ Kuiper’s modified Kolmogorov-Smirnov (V∗

N) test. This test,
while similarly sensitive to sample size, accounts for the ordinality of the
data. V∗

N is calculated as the sum of the two maximum deviations of the
observed cumulative distribution function of di above and below the
cumulative distribution function of Benford distribution, multiplied by
an adjustment factor as

V∗
N ≡

(

max
di∈{1,2,…,9}

{
∑di

i=1
[p(di) − p∗(di)]

}

+ max
di∈{1,2,…,9}

{
∑di

i=1
[p∗(di)

− p(di)]

})⎛

⎝N
1
2 +0.155+ 0.24N−

1
2

⎞

⎠

V∗
N test was initially designed to assess the goodness-of-fit of an observed

distribution to a continuous distribution, while Benford distribution is
categorical. This discrepancy leads to a lower p-value in the V∗

N test,
rendering the test results conservative. Morrow (2014) has provided the
asymptotically valid critical values for V∗

N test with eight degrees of
freedom at 1%, 5%, and 10% significance levels, which are 1.58, 1.32,
and 1.19, respectively. In addition to these two tests, which are designed
for cases where the null distribution exhibits a linear support, we also
adopt the Freedman-Watson U-square (U2) test. This test explicitly ac-
counts for the circular support of distributions, and it is more appro-
priate in the context of Benford’s law, where the FSD grows from 1 to 2
… to 9 to 1 and around again. As in Qu et al. (2020), the U2 is calculated
as

U2 ≡ N
∑9

di=1
tdi

{
∑di

i=1
[p∗(di) − p(di)] −

(
∑9

di=1
tdi [p

∗(di) − p(di)]

)}2

where, for di ∈ {1,2,…,8}, tdi = [p(di) + p(di + 1)]/2, and for di = 9,
tdi = [p(9) + p(1)]/2. Lesperance et al. (2016) have demonstrated that
the asymptotic critical values for inference using U2 test with eight de-
grees of freedom are 0.304, 0.205, and 0.163 at significance levels of
1%, 5% and 10% respectively. To evaluate the conformity of the
observed FSD distribution to Benford distribution, we conduct all three
tests, and our empirical results show a high degree of consistency across
the tests.

The other approach is to adopt appropriate statistical measures that
can quantify the extent of deviation between the observed FSD distri-
bution and the Benford distribution. Such measures are less susceptible
to different sample sizes, thereby mitigate concerns about the impact of
sample size on test results. Importantly, these measures enable a com-
parison of the degree of deviation across datasets, especially when
alternative test results disagree. Following Nigrini (2012), we use the
Mean Absolute Deviation (MAD), a widely recognized measure in the
context of Benford’s law. MAD is computed as the average of the abso-
lute differences between the observed probability of each FSD and the
probability predicted by Benford’s law and it is expressed as follows

MAD ≡
1
9
∑9

i=1
|p∗(di) − p(di)|

A largerMAD signifies a more pronounced deviation of the observed
FSD distribution from the Benford distribution.8 Notably, it’s essential to
acknowledge that MAD is not entirely independent of the sample size,
unless the sample size is sufficiently large. Recognizing this limitation,
Barney and Schulzke (2016) proposed another measure known as the
Excess Mean Absolute Deviation (EXMAD). EXMAD accounts for sample
size, applying a diminishing rate of penalization for larger samples, as
illustrated in Figure A1. It is written as

EXMAD ≡ MAD − E(MAD|N)

where, for N ≤ 500, E(MAD|N) can be calculated using the formula
∑9

di=1
∑N

j=0

(
N
j

)

p(di)j[1 − p(di)]
N− j
(⃒
⃒
⃒
⃒
j
N − p(di)

⃒
⃒
⃒
⃒ /9
)

. For practical appli-

cations with N > 500, and E(MAD|N) can be approximated as
1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
18.13N

√
.9 EXMAD plays a crucial role in evaluating deviations,

especially when dealing with small sample sizes, in which caseMAD is at
the higher risk of report false positives. An EXMAD value smaller than
0 indicates a close conformity of the observed FSD distribution to Ben-
ford distribution. Conversely, a larger EXMAD value indicates a more
significant deviation from Benford distribution. Another statistical
measure of deviation proposed by Cho and Gaines (2007) is the
normalized Euclidean Distance (d∗), which calculates the Euclidean
distance in a nine-dimensional space occupied by an FSD vector,
comparing the observed FSD distribution with Benford distribution. It is
calculated as follows

d∗ ≡
1
M

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑9

i=1
[p∗(di) − p(di)]

2
√

where, M is a normalization factor, defined as

M ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑8

i=1[p(di)]
2
+ [p(9) − 1]2

√

, approximately equal to 1.03631. This
factor assures that d∗ falls within the bounded range of 0–1.10 A higher
value of d∗ indicates a more substantial difference between the observed
FSD distribution and Benford distribution.

2.4. Statistical tests vs. deviation measures

Statistical tests and deviation measures should be considered com-
plementary tools for data screening purposes. Both a larger test statistic
and a greater deviation measure indicate a greater divergence from
Benford’s law. Statistical tests are widely used in Benford studies
because of their ease of use and practical interpretation. Furthermore,
these tests are particularly useful for testing whether the data statisti-
cally conforms to Benford’s law. For example, a χ2 statistic smaller than
13.36 suggests a higher likelihood of data conforming to Benford’s law.
Deviation measures, being less sensitive to sample size, offer more
informative insights when comparing data quality across datasets,
especially when sample sizes vary significantly. Notably, for MAD,
Nigrini (2012) proposes a close conformity threshold of less than 0.006
and a nonconformity threshold of larger than 0.015. However, these
cutoff values are to be used cautiously, especially when dealing with
sample sizes smaller than 1,000, as argued by Barney and Schulzke

7 There is no universal consensus regarding the minimum sample size for χ2
test to be considered valid in Benford analysis. Michalski and Stoltz (2013)
demonstrated through simulation studies that testing Benford’s law requires at
least 110 data points for the test to be powerful. Dang and Owens (2020)
showed that the lower bound of the sample size should be around 100 based on
the asymptotic property of χ2 distribution. We do not explicitly discuss sample
size considerations in this paper, given that all our analysis samples consist of
more than 110 observations.

8 Nigrini (2012) updated experienced cut-off scores for the degrees of con-
formity to the Benford’s distribution: close conformity (0< MAD≤ 0.006),
acceptable conformity (0.006< MAD≤ 0.012), marginally acceptable confor-
mity (0.012< MAD≤ 0.015), or nonconformity (MAD> 0.015).
9 While Barney and Schulzke (2016) proposed the formula of E(MAD|N) for

the first two significant digits, it is straightforward to derive the formula for the
first significant digit. The calculation of E(MAD|N) for small sample size is
extremely computational demanding and we calculated E(MAD|N) in Python.
Calculated values of E(MAD|N) by sample size are listed in Table A3 and plotted
in Figure A1.
10 For details about the calculation of the normalization factor M, refer to
Campanelli (2022).
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(2016). Although less sensitive to sample size, no agreed-upon threshold
exists to determine conformity to Benford’s law for EXMAD and d∗.11

When comparing datasets with similar sample sizes, both smaller test
statistics and deviation measures may indicate a lesser deviation from
the Benford distribution. However, in cases involving significantly
different sample sizes, EXMAD becomes particularly useful, as it adjusts
for larger sample sizes. Given the significant variance in sample sizes
between the CHNS and CFPS, we prefer EXMAD among the three devi-
ation measures.

2.5. Benford’s law applied to health expenditure data

While, as described in Section 2.2, Benford’s law has been used to
assess the accuracy of various economic variables, its application to
health expenditure remains unexplored. To employ Benford’s law for
assessing health expenditure data, it is essential to justify the founda-
tional validity assumption that the genuine data conforms to Benford’s
law. Indeed, accurately reported health expenditure data is likely to
conform to this law. First, the accurate health expenditure data aligns
with the conditions outlined in Hill (1995). The actual health expendi-
ture is realized by complex, unobservable processes involving in-
teractions among various stakeholders: healthcare providers, patients,
their families, and insurers. These interactions are inherently stochastic
and are known only by those directly involved during the healthcare
process, leading to diverse data generating processes that govern the
ultimate health expenditure. For example, the distribution of overall
health expenditure differs between healthier, more educated patients
and their sicker, less educated counterparts. Moreover, the distribution
of patients’ overall health expenditure varies across different de-
partments within the same hospital and across different types of
healthcare facilities. Hill (1995)’s conditions are likely to apply to the
actual expenditure data of the survey sample, randomly taken from
these combined distributions. Secondly, as shown by Duan et al. (1983),
the positive health expenditure data are typically modeled assuming
they follow a right-skewed log-normal distribution, which tends to
conform to Benford’s law (Fang and Chen, 2020; Scott and Fasli, 2001).
This characteristic aligns with the nature of healthcare spending, where
the majority of individuals incur minimal costs, while a minority faces
significantly high expenses. Both the sampling process and statistical
reality underscore the rationale for expecting the conformance of
genuine health expenditure data to Benford’s law.

In addition to theoretical rationales, we further apply Benford’s law
to two sets of hospital administrative records to validate the applica-
bility of Benford analysis to actual health expenditure data, which are
known for their relatively lower susceptibility to reporting errors
compared to self-reported data.12 The first dataset, collected on October
22, 2022, comes from a large regional oncology hospital in Hubei
province China, detailing out-of-pocket payments for 145 hospitalized
patients diagnosed with lung cancer, stomach cancer, liver cancer,
breast cancer, or colorectal cancer. Among these patients, 120 recorded
non-zero out-of-pocket payments, forming the basis for our Benford
analysis.13 The second dataset, comprising 2,622,129 patient-level re-
cords of total charges during the year 2012, is publicly available on the

New York State Government website.14 Table 1 presents the results of
the Benford analysis on both hospital administrative datasets. As shown
in Panel A, the three statistical tests fail to reject that the out-of-pocket
inpatient expenditure conforms to Benford’s law, indicating the
conformance of genuine health expenditure data to Benford’s law. In
Panel B, although tests reject the conformance null hypothesis, the MAD
of 0.0034, aligned with Nigrini (2012)’s cutoff scores, implies a “close
conformity” of the data to Benford’s law. Additionally, the significantly
lower EXMAD in Panel B compared to Panel A suggests a heightened
likelihood of conformity to Benford’s law for the NY State hospital
dataset. These findings not only suggest the conformance of genuine
health expenditure data to Benford’s law but also advocate for the
combined utilization of statistical tests and deviation measures, partic-
ularly in scenarios characterized by large sample sizes.

2.6. Self-reported health expenditure data with measurement error

Like any other consumption and expenditure data derived from
surveys, self-reported health expenditure data is likely to suffer from
measurement error issues. Errors can be introduced into data at any
stage during the survey conduction (survey designs and data collection)
or by any party involved (interviewers and respondents), resulting in
various types of measurement errors (Biemer, 2009). Some errors may
be classical, meaning that they are uncorrelated with the true value of
any variables of interest. For example, illiteracy or innumeracy can lead
to significant, but randommeasurement errors in survey data (De Groote
and Traoré, 2005). However, in far more cases, health expenditure is
associated with respondent characteristics such as age, income, or
family support, and thus it is more likely to contain non-classical errors
(Cohen and Carlson, 1994; Hernan and Cole, 2009). Furthermore, re-
spondents often round and heap their answers on certain values,
particularly in consumption and expenditure surveys (Browning et al.,
2003; Paulin and Krishnamurty, 2018). Consequently, measurement
error is of great importance for studies that estimate a relationship be-
tween health expenditures and respondent characteristics or policy
welfare. The presence of measurement errors will typically cause biased
and inconsistent estimates of regression model parameters (see Bound
et al. (2001) and Schennach (2016) for more complete reviews). In this
section, we review three common types of measurement errors in health
expenditure data, examine their potential correlation with estimate
biases of regression parameters, and assess the performance of Benford
analysis under different situations by simulation.15

We begin by outlining our setup. Following the measurement error
model specification by Bound et al. (2001), we assume the true model is
y∗ = α∗ + β∗x∗ + ε, in which we are interested in the ordinary least
square estimate of β∗. We assume that the error term ε is uncorrelated
with x∗. Instead of x∗ and y∗, we observe x and y from the data with
measurement errors μ and υ, where x = x∗ + μ and y = y∗ + υ.

Case I. classical measurement error exists only in x. In this case, the
model is written as y∗ = α + βx + ε and the assumption that μ is uncor-
related with x∗ holds. In this case, the proportional bias of the estimate
βy∗x is well defined as

βy∗x = β∗

[

1 −
σ2μ

σ2x∗ + σ2μ

]

where, σ2μ and σ2x∗ are variances of μ and x∗. Thus, the classical mea-

11 Experienced cutoff values for d* vary widely in the literature, ranging from
(Cho and Gaines, 2007)’s 0.024 to (Goodman, 2016)’s 0.25, making it chal-
lenging to draw informative conclusions.
12 As pointed out by an anonymous reviewer, it is ideal to justify the appli-
cability of Benford’s law by showing the conformity of genuine data while
highlighting deviations in inaccurate data, however, the with-error version of
these data is unavailable.
13 The dataset with identifiers removed is available upon request.

14 The dataset was available through the website: https://health.data.ny.
gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
/data.
15 The authors thank an anonymous referee for suggesting the examination of
Benford analysis performance under different types of measurement errors, a
consideration that has been overlooked in the Benford literature.
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surement error attenuates the estimate of β∗, and this attenuation bias is
largely determined by σ2μ . In the simulation study, we generate a log-
normally distributed variable x∗ with a mean of 3517 and a standard
deviation of 15,221 which follows the Benford distribution.16 We draw μ
from the normal distributionN

(
0, σ2μ

)
with σ2μ ranging from 10 to 100 by

an increment of 10. We set the sample size to 10,000. We iterate the
process by 10,000 times for each σ2μ value and record the mean test
statistics and deviation measures from the Benford analysis.

Case II. non-classical measurement error added to y. In this case, the
model is written as y = α + βx∗ + ε and the assumption that υ is corre-
lated with x∗ holds. According to Blattman et al. (2016), we get the
expected bias of the estimate βyx∗ as

E
(
βyx∗ − β∗

)
= γ

where, γ is the slope parameter in ν = δ + γx∗ + ϵ and ϵ is the error term.
In the simulation study, we generate the log-normally distributed y∗

with the same mean and standard deviation as in the previous simula-
tion study. We set the sample size to 10,000. We draw x∗ from the
uniform distribution U(− 1,1) and draw ϵ from the standard normal
distribution. For simplicity, we set δ = 0. We choose γ between 20 and
200 with an increment of 20. We iterate the process by 10,000 times for
each γ value and record mean test statistics and deviation measures from
the Benford analysis.

Case III. heaping errors in y. Another common type of non-classical
measurement error for consumption and expenditure variables is the
heaping error. In this case, the model of interest is still written as y =

α+ βx∗ + ε, with values of y disproportionately concentrating on certain
heaped points. According to Ahmad et al. (2024), we generate y with
heaping errors based on the following latent heaping process

y=

⎧
⎨

⎩

Aj∗ , if B < max
j

HPj

y∗, if B ≥ max
j

HPj

where, A1 < A2 < … < Aj < … < Ak are the heaped points, B follows
the uniform distribution between 0 and 1,

HPj(y∗) = exp
(
−

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒y∗ − Aj

⃒
⃒

√

/I
)
is the heaping function with j∗ =

argmax
j

HPj, and I is the predetermined heaping intensity. While there is

no analytical form for the bias of parameter estimate in the heaping case,
Ahmad et al. (2024) argues that with the heaping intensity increasing,
the bias in βyx∗ grows theoretically, which is also shown by simulation
results. We generate y based on a log-normally distributed y∗ with the
same mean and standard deviation as in the previous simulation study.
We set the sample size of 10,000. We pick 6 heaped points including
100, 500, 1,000, 5,000, 10,000, and 50,000 and choose the heaping
intensity I between 0.2 and 2 with an increment of 0.2. We iterate the
process by 10,000 times for each I value and record mean test statistics

and deviation measures from the Benford analysis.
As shown in Fig. 1, both test statistics and deviation measures of

Benford analysis increase as the measurement error and estimate bias of
regression model parameters increase in all three cases. These results are
robust across different cases of measurement error and test statistics.
Therefore, using health expenditure data deviating from the Benford
distribution will potentially take the risk of estimation bias in the
regression model, and using Benford’s law to identify data inaccuracy is
a potentially profitable approach.

3. Health expenditure data in the CHNS and CFPS

3.1. CHNS and CFPS

The Chinese Health and Nutrition Survey (CHNS) is a longitudinal,
comprehensive survey that was designed to assess the impact of health,
nutrition, family planning policies, socioeconomic transformations on
the health and nutrition of the Chinese population. This ongoing
collaborative project, conducted by the University of North Carolina at
Chapel Hill and the Chinese Center for Disease Control and Prevention,
spans ten published waves (1989, 1991, 1993, 1997, 2000, 2004, 2006,
2009, 2011, and 2015). The most recent 2015 wave sampled 7319
households, comprising over 20,914 individuals from 360 communities
across 15 provinces in China using a multi-stage, random cluster pro-
cess.17 The dataset includes detailed information on individual health,
socioeconomic status, demographics, as well as household and com-
munity variables.

The China Family Panel Studies (CFPS) is a nationwide sociological
survey project implemented by Peking University’s Institute of Social
Science Survey. Designed to collect data related to social, economic,
demographic, educational, and health aspects, the CFPS serves as a
valuable database for both academic and policy research. Commencing
in 2010, the CFPS maintains follow-up assessments every two years,
with data collected in six waves (2010, 2012, 2014, 2016, 2018, and
2020). In the most recent wave of 2020, the CFPS surveyed a total of
11,620 households and 28,530 individuals in 31 provinces.18 It includes
information on economic activities, education, family dynamics, popu-
lation movement, and health-related variables.

Table 1
Results of benford analysis on two hospital administrative datasets.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Records from a Hubei Oncology Hospital
OOP Inpatient Expenditure 11.67 1.0433 0.1411 0.0255 0.0042 0.1065 120
Panel B. Records from NY State Hospitals
Total Charge 3279.26*** 25.0475*** 100.4362*** 0.0034 0.0033 0.0152 2,622,129

Notes: * indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent significantly different from the Benford distribution.

16 We set the mean and variance of the simulated sample as those of the CFPS
data as in Table 2.

17 The original 9 sample provinces and autonomous regions in the CHNS were
Heilongjiang, Liaoning, Shandong, Henan, Hubei, Hunan, Jiangsu, Guizhou,
and Guangxi. 3 municipalities including Beijing, Chongqing, and Shanghai were
added in 2011. Another 3 provinces including Shaanxi, Yunnan, and Zhejiang
were added in 2015, although data is not available yet.
18 The original 25 sample provinces, municipalities, and autonomous regions
in the CFPS were Hebei, Shanxi, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhe-
jiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Guangdong, Hunan, Hubei,
Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Guangxi, Beijing, Tianjin,
Shanghai, and Chongqing. Three provinces and autonomous regions including
Qinghai, Ningxia, and Xinjiang were added in 2012. Two provinces and
autonomous regions including Hainan and Inner Mongolia were added in 2014.
The autonomous region of Tibet was added in 2016. Data of Shanghai, Liaon-
ing, Henna, Gansu, and Guangdong were provincially representative, which
allows for province-level inferences and cross-province comparisons (Xie and
Hu, 2014).
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Fig. 1. Benford analysis results and estimate bias with measurement Error
Notes: The figure plots the values of the statistical tests and deviation measures for each case of measurement error. The horizontal axis represents the degree to which
measurement errors contaminate the data. And the horizontal line indicates the critical value (20.09, 1.58, 0.304) of the χ2 test, V∗

N test and U2 test for 99%
confidence level.
1-1. Simulation results for Case I
1–2. Simulation results for Case II1–3. Simulation results for Case III.
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3.2. Survey questions

In the CHNS, respondents are asked about their expenses on health
care and services in the previous four weeks if they had any health
expenditure. Detailed categories encompass self-treatment, outpatient
care, inpatient care, preventive care, and other disease or injury-related
issues. Additionally, respondents are asked about the proportion of ex-
penses covered by their health insurance for outpatient, inpatient, and
preventive care. Respondents were also asked about the proportion in
the format of percentage of the expenses covered by their health in-
surance, which can be used to calculate their out-of-pocket expenses in
these categories. Respondents who replied “unknown” or “if insurance
covers all expenses” in health expense-related questions are excluded
from the data.19

The CFPS records an individual’s health-related expenses for the past
12 months.20 Adult respondents were asked about the total inpatient
care expenses. However, the pattern of health expenditure questions in
the CFPS has evolved since 2012. In the 2010 wave, respondents only
disclosed inpatient care expenses, rendering the calculation of total
health expenditure infeasible. Subsequently, from 2012 onwards, re-
spondents reported additional expenses in addition to inpatient care,
enabling the estimation of total health expenditure. Information on out-
of-pocket inpatient expenses is available exclusively for the 2010 and
2012 waves. Respondents who reported unknown health expenditure

are dropped from the data. Detailed survey questions are listed in
Table A1 and Table A2.

3.3. Variables

In this study, we focus on examining the reporting accuracy of four
variables of health expenditure that are widely used in health economics
literature. These variables are available in both CHNS and CFPS. The
first variable we assess is total inpatient expenditure, inclusive of both out-
of-pocket and insurer payments for inpatient care. The data of this
variable is consistently available in all waves of both datasets. The
second variable under examination is out-of-pocket inpatient expenditure,
which quantifies the financial burden shouldered by patients. The data
of this variable is available for all waves of the CHNS and the 2010 and
2012 waves of the CFPS.

Two additional variables, total health expenditure and out-of-pocket
health expenditure, are constructed to account for overall expenses
related to various types of health care and services. In the CHNS, total
health expenditure encompasses expenses across inpatient care, outpa-
tient care, preventive care, self-treatment, and any other expenses on
disease or injury-related issues. The out-of-pocket health expenditure in
the CHNS is derived by summing the reported out-of-pocket expenses
within three available categories including inpatient care, outpatient
care, and preventive care. Due to the difference in designed questions,
the calculation of total health expenditure is slightly different in the CFPS.
There are only two specific categories available in the CFPS, that is,
inpatient care and other health services, and we construct total health
expenditure by combining expenses for these two categories. The out-of-
pocket health expenditure in the CFPS is determined by summing the

Fig. 1. (continued).

19 Approximately 13% of respondents reported utilization of health care and
services but answered “unknown” or “if insurance covers all expenses” to the
question regarding the associated expenses. With these answers, we are not able
to infer their exact expenses.
20 Since the 2015 wave, respondents in the CFPS were asked questions about
their health care and service utilization and expenditure “during the past 12
months” instead of “during the past year” as in previous survey waves.
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reported total expenses within these two categories, as paid by the
respondent and their family.21 The congruence in survey levels and
definitions of the four variables between the CHNS and CFPS enables a
direct assessment of reporting accuracy of health expenditure variables
between them.

3.4. Descriptive Statistics

To assess the overall accuracy of health expenditure data, we pooled
data across all the waves of the CHNS and CFPS separately, excluding
zero expenditures which are not applicable for Benford analysis. This
cross-section data offers a substantial advantage by strengthening the
statistical power of our analysis through the inclusion of a maximal
number of non-zero observations. The practice of pooling data is not
uncommon in the Benford literature, with Dang and Owens (2020)
having surveyed a series of studies that pooled samples by year, by or-
ganization and year, or by industry and year. Pooling the data across all
the waves, we get around 15,000 and 130,000 observations with posi-
tive health expenditure in the CHNS and CFPS, respectively.22

Descriptive statistics are presented in Table 2. As expected, the
health expenditure variables in both datasets meet the prerequisites
necessary for Benford analysis. The mean-to-median ratios for all vari-
ables exceed 2. This ratio is notably larger for health expenditure vari-
ables than inpatient expenditure variables, mainly because the median
expenditure for respondents with any health expenditure is substantially
lower than inpatient expenditure. While all variables exhibit right-
skewed distributions, total expenditure is more right-skewed. Notably,
there are demographic and socioeconomic differences within the anal-
ysis samples of the CHNS and CFPS. The CHNS sample appears to consist
of more elderly, female, healthier, educated, and rural respondents.
Moreover, the CHNS has a significantly smaller proportion of in-
dividuals covered by health insurance, reflecting the historical reality of
fewer people having health insurance in earlier periods.

3.5. Simulation of conformity to Benford’s law

The validity of applying Benford analysis to self-reported health
expenditure data hinges upon the foundational assumption that genuine
data conforms to Benford’s law. While we have presented supportive
arguments grounded in statistical distributions, random sampling pro-
cesses, and empirical evidence from two hospital administrative data-
sets, we aim to further mitigate the risk of falsified inference by a Monte
Carlo simulation. Following Kaiser (2019), we construct hypothetical
log-normally distributed samples based on the first and second moments
of health expenditure variables sourced from the CHNS and CFPS.23 In
each of the 10,000 iterations, we generate a hypothetical sample mir-
roring the mean, variance, and size of the original datasets, subsequently

computing the χ2 value for a Benford analysis. Fig. 2 illustrates the
distribution of 10,000 calculated χ2 values for each variable within both
datasets, with a vertical line denoting the critical value (i.e., 20.09) for
the 99% confidence level of the χ2 distribution with 8 degrees of
freedom. Most simulated χ2 values fall below this critical threshold,
providing robust reinforcement for the assumption that Benford analysis
is applicable to genuine health expenditure data.

4. Empirical results

4.1. Main results of Benford Analysis

4.1.1. Data comparison with Benford Distribution
In Fig. 3, we plot FSD distributions of total inpatient expenditure, out-

of-pocket inpatient expenditure, total health expenditure, and out-of-pocket
health expenditure by dataset and we add Benford distribution for com-
parison.24 An overview of the graphs suggests that the data is overall
close to Benford distribution with specific patterns of FSDs. However,
FSD of 5 is considerably more common than predicted by Benford dis-
tribution.25 This is consistent with previous studies indicating that
people tend to round reported numbers to certain heaped values when
they cannot recall the exact amount.26 More specifically, as shown in
Table A4, the probability of observing an FSD of 5 in the context of total
health expenditure is 0.148 within the CFPS dataset, nearly twice the
expected probability according to Benford’s law. FSD of 3 is generally
over-reported for health expenditure data as well. FSD of 9, however, is
reported less frequently than expected. The reported probabilities of
total health expenditure and out-of-pocket health expenditure in the CFPS
are both around 0.009, as opposed to the expected probability of 0.046
by Benford’s law. FSDs of 4 and 7 are also generally reported less
frequently than Benford’s law.

While FSD distributions of all variables deviate from Benford’s law,
the deviation of the out-of-pocket expenditure variables appears to be
overall smaller than the total expenditure variables. This discrepancy
might be due to the complexity of memorizing and reporting total ex-
penses. When visually comparing the FSD distributions between the
CHNS and CFPS, total inpatient expenditure, total health expenditure, and
out-of-pocket health expenditure in the CHNS are generally closer to the
Benford distribution than the CFPS. Specifically for total health expen-
diture and out-of-pocket health expenditure, as shown in Table A4, FSD of 5
in the CFPS is more frequently reported than the CHNS by 3.7 and 4.7
percentage points, respectively. It’s also worth noting that we cannot
determine whether the CHNS or CFPS has more accurately reported out-
of-pocket inpatient expenditure through visual inspection.

4.1.2. Statistical tests and deviation measures
In addition to visual analysis, we conduct statistical tests to examine

whether FSD distributions of health expenditure data recorded in the
CHNS and CFPS statistically conform to Benford’s law, and compute
deviation measures to compare the goodness-of-fit of the data to Benford
distribution. The test results and deviation measures that suggest the
degree of deviation are presented in Table 3. Our statistical tests reject
the hypothesis that the health expenditure data in the CHNS and CFPS
conform to the Benford distribution, supplementing our visual findings
of inaccuracies in self-reported health expenditure data. An exception to
note is that both χ2 and U2 test fail to reject the conformance hypothesis
for out-of-pocket inpatient expenditure in the CHNS. Nevertheless, this

21 Our primary focus centers on the reported incurred expenditure, as opposed
to other variables, such as whether a respondent had any health expenditure.
This latter variable is also of importance to researchers in the field of health
economics and policy studies. The main reason is that the utilization of Benford
analysis in this paper necessitates its application to the first significant (non-
zero) digit(s) of reported numbers. The other reason is that the act of accurately
reporting whether one has been hospitalized in the past is generally less
memory-demanding compared to reporting the specific amount of expense
incurred, and thus, it is likely to be more accurate.
22 Following the prevailing approach in the Benford literature, we did not
adjust the expenditure inflation. The analysis is primarily centered on assessing
the accuracy of reporting, rather than on the absolute magnitude of the
expenditure.
23 Refer to Section 4 in (Kaiser, 2019) for detailed information regarding the
generating process of the hypothetical log-normally distributed sample. While
the variables generated in Kaiser’s paper pertain to income and those in our
study concern health expenditure, the underlying algorithm should remain
similar.

24 Table A4 presents detailed Benford distribution and FSD distributions of the
health expenditure variables.
25 Judge and Schechter (2009) used Benford’s law to examine household
agricultural production data and likewise found that the data with an FSD of 5
is much over-reported.
26 Figure A2 and A3 plot the time trends of EXMAD measures for data in the
CHNS and CFPS.
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result is subject to some limitations, as both tests are highly influenced
by sample size. In contrast, evidence based on V∗

N test marginally and
significantly rejects the conformance hypothesis. This is in line with the
understanding that V∗

N test often yields more conservative results in the
context of discrete distribution. While we must interpret these test re-
sults with caution due to their sensitivity to sample size, they collec-
tively suggest that self-reported health expenditure data in both datasets
exhibit some reporting inaccuracy. Further analyses are conducted on
the degree of data inaccuracy in both datasets.

Comparing the CFPS to the CHNS, all test statistics for the CHNS are
much smaller, but this discrepancy can largely be attributed to the
bigger sample size of the CFPS. To mitigate the impact of sample size
differences, we rely on the more robust measures including MAD,
EXMAD, and d∗, with a particular focus on the less sample-size-sensitive
measure, EXMAD. The results based on EXMAD suggest that FSD dis-
tributions of all health expenditure variables deviate less from the
Benford distribution in the CHNS. For example, the EXMAD for total
inpatient expenditure is 0.0110 in the CFPS and 0.0036 in the CHNS,
which is less than one-third of the CFPS. The results from all three de-
viation measures consistently show that the reporting accuracy of total
inpatient expenditure, total health expenditure, and out-of-pocket health
expenditure is better in the CHNS.

When assessing the extent of deviation among different variables, the
results based on values of EXMAD show that the inpatient expenditure
variables exhibit a relatively lower degree of deviation from the Benford
distribution compared to the total expenditure variables. This observa-
tion is true within both datasets and for both total and out-of-pocket
variables. This lends support to our surmise that the process of aggre-
gating categorical expenses into a total cost figure may introduce an
additional source of reporting inaccuracies, when contrasted with the
direct reporting of inpatient expenditure.

The statistical non-conformance of health expenditure data with
Benford distribution may be due to respondents rounding their hard-to-
remember expenditure to heaped values. For example, a respondent is
more likely to report an expense of 500 CNY rather than 480 CNY. This
explanation finds support in the visual examination of the data
compared to the Benford distribution. Furthermore, the more significant
deviation in total expenditure than inpatient expenditure aligns with
this explanation, as the process of calculating total expenditure accu-
mulates rounding errors from each sub-category of expenses. In addi-
tion, the observed under-reported FSD of 4 indicates that 5 is more
frequently reported than what would be predicted based on Benford

distribution, at the cost of rounding the neighboring number.

4.2. Robustness of main results

We have demonstrated how Benford analysis identifies reporting
inaccuracies in health expenditure data and compared the degree of
inaccuracy using the CFPS and CHNS datasets. However, concerns may
arise regarding the differences in survey scales, designs, and sample
sizes, which could impact the robustness of the results and generaliz-
ability of the analysis. Although the EXMAD is used to mitigate the
impact of sample size, it is not entirely independent of sample size. In
this section, we re-conduct Benford analyses to assess the conformance
of health expenditure variables to Benford distribution and compare
degrees of inaccuracies of the variables between two datasets by con-
trolling the same survey provinces and years, considering the role of
recall periods, and experimenting with a set of simulation studies with
the same sample size.

4.2.1. Survey area and year
The CFPS covers 31 provinces in its most recent wave, and the CHNS

includes data from 12 provinces. Additionally, the CHNS data spans
from 1988 to 2015, whereas the CFPS began in 2010 and continued until
2020.27 These differences in provinces and years are associated with
variations in sample demographics, local health policies, and healthcare
accessibility, potentially leading to the different patterns of health
expenditure and data accuracy. To assess whether the main results are
influenced by survey areas and years, we conducted three sets of Benford
analyses.

In the first analysis, we restrict the CFPS sample to provinces avail-
able in the CHNS, ensuring both samples represent the same survey
areas. We then conduct the second analysis using the survey waves
collected in the same corresponding years in both surveys to control the
year effect. The survey waves we use are the 2009, 2011, and 2015
waves of the CHNS and the 2010, 2012, and 2016 waves of the CFPS. In
the third analysis, we match both provinces and survey waves to control
the impacts of both survey area and year on the analysis results.

Table 2
Descriptive statistics.

CHNS CFPS

Panel A. Health Expenditure Variables (in Chinese Yuan)

Mean S.D. Median Skewness Observations Mean/
Median

Mean S.D. Median Skewness Observations Mean/
Median

Total Inpatient Expenditure 6853 15,012 2000 5.45 1145 3.43 12,383 24,877 5000 7.23 20,163 2.48
OOP Inpatient Expenditure 5969 15,908 2000 9.13 605 2.98 6231 12,700 2600 5.81 5229 2.40
Total Health Expenditure 1766 10,109 75 9.13 15,537 23.56 3517 15,221 600 67.08 130,936 5.86
OOP Health Expenditure 1677 7535 100 10.03 4377 16.77 2626 9263 500 17.24 103,785 5.25

Panel B. Demographic and Socioeconomic Characteristics
Mean S.D. Min Max Observations Mean S.D. Min Max Observations

Age 44.42 23.30 0 100 15,537 40.54 22.10 0 104 130,916
Whether Female 0.55 0.50 0 1 15,537 0.52 0.50 0 1 130,930
Self-rated Health 2.83 0.86 1 5 7111 3.20 1.24 1 5 114,559
Educational Years 6.52 4.44 0 18 13,765 6.25 5.09 0 18 126,049
Whether Having Health
Insurance

0.64 0.48 0 1 14,493 0.87 0.33 0 1 129,174

Whether Rural Resident 0.60 0.49 0 1 15,537 0.54 0.50 0 1 128,010

Notes: Self-rated health status ranges from 1 to 5 for most respondents, and a higher value indicates a worse health status. Five categories in the 2010 CFPS wave are 1-
Healthy, 2-Fair, 3-Relatively Unhealthy, 4-Unhealthy, and 5-Extremely Unhealthy. Five categories in later CFPS waves are 1-Excellent, 2-Very Good, 3-Good, 4-Fair,
and 5-Poor. Four categories in and before 2006 CHNS waves are 1-Excellent, 2-Good, 3-Fair, and 4-Poor. Five categories in later CHNS waves are 1-Very Good, 2-Good,
3-Fair, 4-Bad, and 5-Very Bad.

27 Another expense variable with the same recall period, available in both the
CHNS and the CFPS, is the monthly housing rent. However, the reliability of
this variable raises concerns in the CHNS, as the reported median housing rent
is as low as 11 CNY. For this reason, housing rent is excluded from our analysis.
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The results, as presented in Table 4, suggest that statistical tests
generally reject the conformance of health expenditure variables to the
Benford distribution. EXMAD results demonstrate that the reporting
accuracy of inpatient expenditure outperforms the overall health
expenditure for both total and out-of-pocket measures. Results also
suggest that health expenditure variables in the CHNS exhibit less

deviation from the Benford distribution than those in the CFPS. This
aligns with our main analysis results. Another significant takeaway is
the consistent failure of all three tests to reject the out-of-pocket inpatient
expenditure conforms to Benford distribution in the CHNS, but not in the
CFPS. However, MAD and d∗ results of the out-of-pocket inpatient
expenditure do not favor the CHNS, and only EXMAD results favor the

Fig. 2. Monte Carlo simulation results of χ2 tests for hypothetical health expenditure Data
Notes: The figure graphs the simulated χ2 values for each hypothetical health expenditure variable of the CHNS and CFPS. The horizontal axis represents the χ2 value
of each simulation, while the vertical line indicates the critical value (20.09) of the χ2 distribution for 99% confidence interval. The 99th percentile χ2 values of the
Monte Carlo simulation for all the variables are 20.9836 (Total Inpatient Expenditure in CFPS), 20.0253 (Out-of-Pocket Inpatient Expenditure in CFPS), 20.3157
(Total Health Expenditure in CFPS), 20.3661 (Out-of-Pocket Health Expenditure in CFPS); 19.3867 (Total Inpatient Expenditure in CHNS), 20.0808 (Out-of-Pocket
Inpatient Expenditure in CHNS), 20.1858 (Total Health Expenditure in CHNS), 20.6549 (Out-of-Pocket Health Expenditure in CHNS).
2-1. Simulation results for data in the CHNS
2-2. Simulation results for data in the CFPS.
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CHNS. In this situation, discerning the superiority of the out-of-pocket
inpatient expenditure between the CHNS and CFPS is challenging. This
also underscores the necessity of combining statistical tests and devia-
tion measures to ensure robust results in Benford analysis.

4.2.2. Recall period
The CFPS records the health expenditure for the past 12 months,

whereas the CHNS records data for the past four weeks. The relationship

between the length of the recall period and reporting accuracy has been
subject to mixed findings in previous studies. For example, Clarke et al.
(2008) stated that a more extended recall period increases the likelihood
of recall error as a result of memory decay in reporting health care and
service consumption and utilization, while Bhandari andWagner (2006)
found that data accuracy for a shorter recall period could be affected
more by recall error due to the telescoping effect. To control some of the
impacts of the recall period, we perform the same Benford analysis on

Fig. 3. Fsd distributions of health expenditure data and benford Distribution
Notes: The Benford distribution is added to all the histograms for comparison.
3-1. Health expenditure data in the CHNS
3-2. Health expenditure data in the CFPS.

Z. Hao et al.



Social Science & Medicine 356 (2024) 117155

13

other reported expense and income variables which have the same recall
periods and are available in both datasets. The variables we examine
include annual household expenses on education, events, gifts, as well as
monthly individual salary and annual household income.28 These vari-
ables, which appear to follow Benford distribution, provide valuable
insights into reporting accuracy due to the distinct designs of the data-
sets.29 Specifically, these variables share the identical recall periods in
both datasets, mitigating concerns about the potential impact of recall
periods on data accuracy. We expect that if the difference in reporting
accuracy of health expenditure data is mainly due to the lengths of recall

periods, other measures with the same recall periods should not clearly
outperform either dataset.

The results, as depicted in Table 5, reject the hypotheses that these
expense and income variables conform to the Benford distribution at the
99% confidence level. However, according to EXMAD, all six variables
exhibit less deviation from the Benford distribution in the CHNS
compared to the CFPS. MAD and d∗ results generally show similar
trends. These results suggest a preference for utilizing the CHNS dataset,
particularly in health economics research that frequently relies on
expenditure and income variables. The empirical observation that
Benford analyses, applied to the health expenditure data and various
other expense and income data, favor the CHNS, implies a possible
systematic difference in the data reporting process between the CHNS
and CFPS. This discrepancy may result from differences in enumerator
skills, questionnaire precision, and other factors. It is challenging to
rigorously test these differences within the confines of our analysis
design. Nevertheless, our results help alleviate some concerns that
varying recall period lengths contribute to lower reporting accuracy of

Table 3
Results of benford analysis on FSD.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

CHNS Total Inpatient Expenditure 19.17** 1.5342** 0.2183** 0.0105 0.0036 0.0359 1145
OOP Inpatient Expenditure 9.57 1.2418* 0.1492 0.0129 0.0034 0.0439 605
Total Health Expenditure 743.82*** 7.1721*** 5.8593*** 0.0172 0.0153 0.0588 15,537
OOP Health Expenditure 74.40*** 2.0206*** 0.3932*** 0.0109 0.0073 0.0374 4377

CFPS Total Inpatient Expenditure 649.36*** 7.7234*** 6.3353*** 0.0140 0.0123 0.0484 20,163
OOP Inpatient Expenditure 87.85*** 3.1340*** 1.2148*** 0.0099 0.0066 0.0356 5229
Total Health Expenditure 17821.54*** 35.2976*** 132.4932*** 0.0285 0.0279 0.0977 130,936
OOP Health Expenditure 13225.03*** 32.4190*** 109.2286*** 0.0284 0.0276 0.0949 103,785

Notes: * indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent significantly different from the Benford distribution.

Table 4
Results of benford analysis on FSD by controlling the province and survey year.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Matched Provinces
CHNS Total Inpatient Expenditure 19.17** 1.5342** 0.2183** 0.0105 0.0036 0.0359 1145
CFPS 293.89*** 4.6834*** 1.9337*** 0.0134 0.0110 0.0454 9593
CHNS OOP Inpatient Expenditure 9.57 1.2418* 0.1492 0.0129 0.0034 0.0439 605
CFPS 59.36*** 2.4027*** 0.6319*** 0.0110 0.0063 0.0411 2455
CHNS Total Health Expenditure 743.82*** 7.1721*** 5.8593*** 0.0172 0.0153 0.0588 15,537
CFPS 7821.88*** 23.8991*** 57.1335*** 0.0290 0.0280 0.0969 58,567
CHNS OOP Health Expenditure 74.40*** 2.0206*** 0.3932*** 0.0109 0.0073 0.0374 4377
CFPS 5850.92*** 20.9476*** 45.9637*** 0.0281 0.0270 0.0950 45,343
Panel B. Matched Years
CHNS Total Inpatient Expenditure 14.12* 0.9853 0.1058 0.0130 0.0031 0.0428 562
CFPS 311.13*** 5.7975*** 3.3648*** 0.0150 0.0126 0.0499 10,001
CHNS OOP Inpatient Expenditure 9.02 0.9402 0.0997 0.0138 0.0026 0.0489 439
CFPS 87.85*** 3.1340*** 1.2148*** 0.0099 0.0066 0.0356 5229
CHNS Total Health Expenditure 483.74*** 5.4776*** 3.5737*** 0.0205 0.0178 0.0705 7066
CFPS 9482.31*** 26.2111*** 73.8902*** 0.0298 0.0289 0.1005 66,273
CHNS OOP Health Expenditure 25.30*** 1.2652* 0.2131** 0.0088 0.0042 0.0319 2578
CFPS 5386.85*** 21.0419*** 46.5206*** 0.0292 0.0280 0.0966 41,160
Panel C. Matched Provinces and Years
CHNS Total Inpatient Expenditure 14.12* 0.9853 0.1058 0.0130 0.0031 0.0428 562
CFPS 153.60*** 3.7586*** 1.3658*** 0.0152 0.0118 0.0498 4802
CHNS OOP Inpatient Expenditure 9.02 0.9402 0.0997 0.0138 0.0026 0.0489 439
CFPS 59.36*** 2.4027*** 0.6319*** 0.0110 0.0063 0.0411 2455
CHNS Total Health Expenditure 483.74*** 5.4776*** 3.5737*** 0.0205 0.0178 0.0705 7066
CFPS 4178.91*** 17.2575*** 30.8255*** 0.0296 0.0282 0.0993 29,924
CHNS OOP Health Expenditure 25.30*** 1.2652* 0.2131** 0.0088 0.0042 0.0319 2578
CFPS 2416.82*** 13.7074*** 19.6542*** 0.0291 0.0274 0.0976 17,909

Notes: Matched provinces refer to the sample, of which provinces are available in both datasets. These provinces are Liaoning, Heilongjiang, Jiangsu, Shandong, Henan,
Hubei, Hunan, Guangxi, and Guizhou in the 2010 CFPS wave and Beijing, Shanghai, and Chongqing are added to later CFPS waves. Matched years refer to the sample,
of which survey waves that record the health expenditure incurred in the same year of both datasets, that is, 2009, 2011 and 2015 in the CHNS and 2010, 2012 and
2016 in the CFPS. Matched provinces and years refer to the sample, of which provinces are available in both datasets and health expenditure incurred in the same years
of both datasets. * indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent, significantly different from the Benford distribution.

28 Summary statistics of these variables are shown in Table A5.
29 We perform the same bootstrap procedure for d∗, and the results are highly
consistent with MAD and available upon request. We do not specifically on
EXMAD in this bootstrap analysis. This is because the EXMAD formula consists
of MAD, which we already addressed in this analysis, and a sample size factor
that remains constant for all the variables with the same sample size.
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health expenditure variables in the CFPS.

4.2.3. Sample size
There is a large difference in sample size between analyzed variables

and between the CHNS and CFPS in general. For example, there are
20,163 observations with positive total inpatient expenditure in the CFPS,
whereas there are only 1145 such observations in the CHNS. Although
our study employs three deviation measures to assess the goodness-of-fit
of the health expenditure data to the Benford distribution, it is important
to note that these measures are not used without concern. The calcula-
tion of EXMAD, although designed to be less reliant on sample size, still
depends on it. The adverse association between sample size and EXMAD
amplifies as the size grows, unless the sample size is sufficiently large. To
further account for the impact of sample size on our analysis results, we
conduct the Benford analysis using a bootstrap procedure, and calculate
MAD based on the bootstrapped samples with the same size in the CHNS
and CFPS.30 Similar to Michalski and Stoltz (2013), we randomly draw
the same number of observations from each dataset with replacement,
repeat the Benford analysis 1000 times, and calculate the mean and
standard deviation of MAD based on the bootstrapped samples. We
experiment with the sample sizes ranging from 100 to 500 with an
increment of 50.

Figs. 2–4 depict the mean ofMAD of the health expenditure variables
by sample size, showing the expected decrease in MAD with increasing
sample size. Figs. 1–4 reaffirms the observation that total inpatient
expenditure is reported more accurately than total health expenditure,
aligning with the main results. Across almost all sample sizes, total
inpatient expenditure, total health expenditure, and out-of-pocket health
expenditure deviate less from the Benford distribution in the CHNS.
However, as shown in Figs. 2–4, the calculated MAD of out-of-pocket
inpatient expenditure is slightly bigger in the CHNS. While this difference
is statistically negligible with smaller sample sizes, it turns out to be
significant as sample size increases. This empirical observation un-
derscores the sensitivity of MAD to sample size. Bootstrap results for
MAD, controlling for the same sample sizes for all the variables in both
datasets, align with the main results. Yet, it is crucial to note that
achieving identical sample sizes for variables of interest is unlikely in

most empirical analyses. In our analysis sample, for example, there are
605 observations for out-of-pocket inpatient expenditure in the CHNS and
5229 observations in the CFPS. Despite the robustness of theMAD result,
it does not adequately address sensitivity concerns when comparing the
reporting accuracy of variables with a large discrepancy in sample sizes.
In such cases, EXMAD stands out as a more reliable and practical devi-
ation measure for Benford analysis.

4.3. Indicators for data accuracy

In this section, we explore whether potential data inaccuracy issues
can be identified using readily available information within the dataset.
Specifically, we investigate whether certain indicators, such as enu-
merators’ opinions about respondents, the time interval between hos-
pitalization and interview, and the use of proxy responses by other
family members, are indicative of the reporting accuracy of health
expenditure data.

4.3.1. Enumerators’ opinions
The CFPS requested enumerators to evaluate both the credibility of

respondents’ answers and the perceived urgency of concluding the
interview. Ratings for both questions range from 1 to 7, with 1 indicating
the least credibility or urgency and 7 indicating the highest. We cate-
gorize the analysis sample into two groups based on average credibility
scores: the more credible sample and the less credible sample. Similarly,
we perform the same categorization based on urgency scores. Our
rationale is grounded in the intuition that respondents assessed as more
credible or less urgent may exhibit greater patience in answering the
question, a higher degree of participation, and a more serious attitude
towards the survey, ultimately leading to the improved data accuracy.

Table 6 presents a comparison of Benford analysis results between
those who were judged to be above and below average in terms of level
of credibility and degree of urgency in their responses. Panel A shows
that test statistics for those whose answers were perceived to be above
average in credibility are bigger, mainly due to the higher number of
respondents falling into this category. However, intriguingly, their de-
viation measures, MAD, EXMAD, and d∗ are also larger. If anything, the
data in the group of “more credible” appears to be worse than that of
“less credible”. This presents a conflicting conclusion regarding the
anticipated impact of numerators’ assessments of respondents’ credi-
bility on data accuracy. In Panel B, three out of four variables demon-
strate more accurate reporting for those who are judged to be more
urgent to end the interview, as indicated by EXMAD. Only total health
expenditure exhibits significantly smaller deviation measures for less
urgent respondents. These results do not establish a clear link between
respondents’ urgency levels and data accuracy. These results suggest

Table 5
Benford analysis on variables with the same recall period between two datasets.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Household Expense Variables
CHNS Education (past year) 250.25*** 2.9179*** 1.0362*** 0.0193 0.0160 0.0614 5147
CFPS 8407.87*** 23.8559*** 67.3954*** 0.0176 0.0170 0.0621 140,344
CHNS Events (past year) 472.30*** 5.7801*** 3.0637*** 0.0223 0.0194 0.0723 6312
CFPS 2062.37*** 13.5372*** 20.6474*** 0.0274 0.0257 0.0900 18,823
CHNS Gifts (past year) 6479.28*** 24.1906*** 60.2590*** 0.0258 0.0249 0.0875 58,238
CFPS 27391.47*** 49.0263*** 266.7580*** 0.0328 0.0323 0.1082 172,045
CHNS Total Expenses (past year) 372.59*** 6.5758*** 8.2885*** 0.0064 0.0055 0.0269 79,126
CFPS 2566.06*** 22.1335*** 74.6896*** 0.0103 0.0098 0.0414 228,832
Panel B. Income Variables
CHNS Individual Salary (past month) 424.16*** 4.9473*** 2.4781*** 0.0079 0.0065 0.0311 27,454
CFPS 6732.75*** 36.1302*** 167.7458*** 0.0361 0.0350 0.1264 49,503
CHNS Household Income (past year) 238.74*** 6.5284*** 4.8736*** 0.0045 0.0039 0.0162 124,705
CFPS 4677.55*** 31.8669*** 118.4834*** 0.0147 0.0142 0.0513 230,796

Notes: Recall periods are in parentheses. * indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent, significantly different from the Benford
distribution.

30 The CFPS provides enumerators’ opinions about respondents on various
other dimensions, including the levels of collaboration, intelligence, interest in
the interview, concerns about the interview, and comprehension of survey
questions. Analysis results of these variables are highly consistent with those of
the credibility of a respondent’s answers and the perceived urgency of
concluding the interview presented in this section. Detailed results are available
upon request.
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that enumerators’ opinions may not directly influence the reporting
accuracy, possibly due to the subjective nature of these assessments.31

For example, enumerators could make themselves look good by label-
ling more respondents as “credible” when the answers of these re-
spondents should not be trustworthy. Interestingly, Judge and Schechter
(2009) also found that “good” crop production data marked by survey
enumerators are also less in accord with Benford’s law.

4.3.2. Time intervals between hospitalization and interview
In the 2010 and 2012 waves, the CFPS collected information on the

number of times a respondent was hospitalized in the past year and the
exact month of hospitalization. Examining the variation in lengths be-
tween the hospitalized month and the interview month provides us with
an opportunity to assess whether a more recent hospitalization experi-
ence is associated with better accuracy in reporting health expenditure
data. Each hospitalization record of a respondent is treated as a separate
observation in this analysis. We categorize the sample into different
analysis groups based on the time interval between hospitalization and

the interview in two ways: by the average length of the interval and by
every three months, ensuring comparable sample sizes in each group.

Panel A of Table 7 compares Benford analysis results for more recent
incurred expenditures to the past, revealing that the more recent
incurred expenditure data deviates less from the Benford distribution.
Panel B breaks down the results by every three months, demonstrating
that health expenditure incurred in the past recent three months
conform better to Benford distribution than any other time in the past.
We even fail to reject the hypothesis that total health expenditure con-
forms to Benford’s law based on χ2, V∗

N, and U2 test results. Overall, the
evidence suggests that the time interval between hospitalization and the
interview might be able to serve as an informative indicator of reporting
accuracy of health expenditure data.

4.3.3. Proxy responses
In cases where the interviewee could not be reached by any means,

CFPS interviewers collected health expenditure data from other family
members in the same household, known as proxy responses. These proxy

Fig. 4. Bootstrap results of MAD from benford Analysis
Notes: In order to test the statistical difference between the out-of-pocket inpatient expenditure and the out-of-pocket inpatient expenditure, 99% confidence intervals
are plotted for the out-of-pocket inpatient expenditure variables.
4-1. Mad for inpatient and total Expenditure
4-2. Mad for out-of-pocket expenditure.
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Table 6
Benford analysis results by Enumerator’s opinion on respondents in CFPS.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Credibility of Answers
More Credible Total Inpatient Expenditure 410.93*** 0.0367*** 4.5023*** 0.0157 0.0135 0.0530 11,609
Less Credible 75.46*** 0.0309** 0.7999*** 0.0121 0.0075 0.0458 2533
More Credible OOP Inpatient Expenditure 74.25*** 2.9562*** 1.0374*** 0.0114 0.0077 0.0386 4044
Less Credible 22.55*** 1.3394** 0.2347** 0.0093 0.0025 0.0352 1185
More Credible Total Health Expenditure 10216.04*** 26.9941*** 76.5179*** 0.0296 0.0287 0.1005 71,183
Less Credible 1749.67*** 11.4560*** 13.9900*** 0.0284 0.0263 0.0962 13,353
More Credible OOP Health Expenditure 6682.42*** 23.2250*** 56.3925*** 0.0291 0.0281 0.0971 50,581
Less Credible 1038.09*** 9.3552*** 9.2617*** 0.0285 0.0258 0.0950 8094
Panel B. Urgent to End the Interview
More Urgent Total Inpatient Expenditure 72.35*** 2.0642*** 0.6030*** 0.0119 0.0066 0.0467 2028
Less Urgent 530.10*** 7.3188*** 5.6016*** 0.0148 0.0129 0.0511 15,436
More Urgent OOP Inpatient Expenditure 15.74** 0.9573 0.0776 0.0195 0.0053 0.0655 292
Less Urgent 49.48*** 2.6855*** 0.7559*** 0.0120 0.0073 0.0421 2463
More Urgent Total Health Expenditure 2030.22*** 12.0163*** 13.9905*** 0.0303 0.0283 0.1027 13,496
Less Urgent 13713.76*** 30.6769*** 100.4612*** 0.0281 0.0274 0.0969 102,610
More Urgent OOP Health Expenditure 1483.70*** 10.5626*** 11.3657*** 0.0291 0.0268 0.0982 10,777
Less Urgent 9813.68*** 28.1082*** 81.2589*** 0.0282 0.0274 0.0943 78,282

Notes: * indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent, significantly different from the Benford distribution.

Table 7
Benford analysis results by the time interval between hospitalization and interview in CFPS.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Recent vs. Past
Recent Total Inpatient Expenditure 89.44*** 2.6468*** 0.7583*** 0.0120 0.0081 0.0408 3630
Past 81.29*** 3.1158*** 0.9198*** 0.0132 0.0090 0.0466 3078
Recent Total Health Expenditure 14.87* 1.4179** 0.2652** 0.0055 0.0014 0.0204 3315
Past 17.11** 1.7407*** 0.2587** 0.0072 0.0028 0.0239 2845
Panel B. Every 3 Month
Recent 3 Months Total Inpatient Expenditure 46.23*** 1.6846*** 0.2828** 0.0102 0.0047 0.0388 1806
Past 3–6 Months 58.49*** 2.2518*** 0.5880*** 0.0138 0.0083 0.0511 1824
Past 6–9 Months 48.87*** 2.4390*** 0.5093*** 0.0154 0.0094 0.0509 1545
Past 9–12 Months 40.91*** 2.2958*** 0.5194*** 0.0131 0.0071 0.0469 1533
Recent 3 Months Total Health Expenditure 12.11 1.0765 0.1198 0.0059 0.0001 0.023 1640
Past 3–6 Months 14.23* 1.6391*** 0.3062*** 0.0093 0.0036 0.0344 1675
Past 6–9 Months 19.33** 1.5534** 0.2148** 0.0092 0.0029 0.0348 1427
Past 9–12 Months 12.16 1.1394 0.1785* 0.0076 0.0013 0.0302 1418

Notes: In CFPS, the 2010 and 2012 waves recorded information about the month and expenditure of each hospitalization history of respondents. Total inpatient
expenditure and total health expenditure are available. Total inpatient expenditure includes all medical costs for medicine, treatment, inpatient service as well as costs
of living, food, and nursing care. Total health expenditure includes both total inpatient expenditure and other expenditure on lodging, food, nursing care and other
expenses. The out-of-pocket expense is not available for these detailed hospitalization records, thus, we cannot examine the out-of-pocket expenditure in this practice. *
indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent, significantly different from the Benford distribution.

Table 8
Benford analysis results by proxy responses as opposed to self-reported responses in CFPS.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Whether Proxy Response
Self-reported Total Inpatient Expenditure 484.84*** 6.7777*** 4.6395*** 0.0145 0.0125 0.0513 13,256
Proxy 100.20*** 3.3071*** 1.1745*** 0.0212 0.0151 0.0717 1504
Self-reported Total Health Expenditure 10256.85*** 26.0699*** 71.7279*** 0.0275 0.0266 0.0954 78,734
Proxy 2640.63*** 14.4937*** 21.8053*** 0.0298 0.0281 0.0998 18,804
Self-reported OOP Health Expenditure 9589.04*** 27.6306*** 78.6121*** 0.0283 0.0274 0.0947 75,903
Proxy 2537.00*** 14.2534*** 20.9839*** 0.0292 0.0275 0.0979 18,698
Panel B. Proxy for Other Adults or Children
Adults Total Health Expenditure 759.34*** 8.2345*** 6.8871*** 0.0308 0.0276 0.1007 5529
Children 1885.59*** 11.9434*** 14.9801*** 0.0294 0.0274 0.0997 13,275
Adults OOP Health Expenditure 735.38*** 8.0589*** 6.5972*** 0.0301 0.0270 0.0988 5514
Children 1804.84*** 11.7703*** 14.4361*** 0.0288 0.0268 0.0977 13,184

Notes: For Panel A, the sample size for out-of-pocket inpatient expenditure answered by proxies is too small to conduct Benford analysis, and thus out-of-pocket
inpatient expenditure is not analyzed. For Panel B, children’s total inpatient expenditure and out-of-pocket inpatient expenditure answered by proxies are not
available in the data, and thus total inpatient expenditure and out-of-pocket inpatient expenditure are not analyzed. * indicates 90 percent, ** indicates 95 percent, and
*** indicates 99 percent, significantly different from the Benford distribution.
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responses introduce multifaceted impacts on the data. On one hand, they
provide valuable information that would otherwise be entirely missing,
reducing attrition in the analysis sample. On the other hand, proxy re-
sponses may be more susceptible to significant reporting and rounding
errors compared to self-reported answers, particularly in the case of
retrospective data, such as detailed health expenditure, which could
incur unexpectedly without the knowledge of anyone else. It is worth
noting that self-reported expenditure might not always guarantee higher
accuracy compared to the data reported by someone else. For example,
someone who was hospitalized might not be able to remember the ex-
penses more correctly than the family member who made the actual
payment, particularly when the payment was made in cash, or the
associated invoice was missing.

In Table 8, Panel A examines the relationship between proxy re-
sponses and data accuracy by comparing Benford analysis results for
health expenditure data provided by respondents themselves to proxy
answers from other family members. Due to the large sample size, the
statistical tests reject the conformity of health expenditure data to the
Benford distribution. However, all the statistical deviation measures
favor self-reported expenditure data over proxy responses. Remarkably,
even with a significantly larger sample size for self-reported data,MAD,
EXMAD, and d∗ values for self-reported data are consistently smaller,
providing relatively strong evidence that self-reported expenditure is
more accurate than proxy responses. In Panel B, we find some evidence
that proxy responses for children tend to be more accurate than those for
adults, particularly for both total and out-of-pocket health expenditure.
One plausible explanation is that expenses related to children are typi-
cally paid by their parent-proxies, whereas certain expenditure incurred
by adults may be only partially known to their corresponding adult-
proxies.

4.3.4. Level of data: household or individual
As a longitudinal family survey, the CFPS meticulously records a

comprehensive set of household information, including expenditures on
healthcare. The survey involves interviewing the individual “deemed
most knowledgeable about the household’s financial circumstances”,
thereby capturing out-of-pocket health expenditure for the entire
household over the past 12 months. Given the data availability, re-
searchers may opt for either household or individual-level analyses
depending on the specific research question. Despite that only the out-
of-pocket health expenditure is available at the household level, this
presents an opportunity to explore potential differences in data accuracy
between household and individual levels.

Panel A of Table 9 presents the results of Benford analysis conducted
on individual and household out-of-pocket health expenditure across the
entire CFPS sample. Values of EXMAD as well as other deviation mea-
sures suggest that the household-level data exhibits superior perfor-
mance compared to its individual-level counterpart. This finding
resonates with Kaiser (2019)’s Benford analysis conclusions, which
suggest that respondents tend to provide more reliable information
regarding household income than individual income. In Panel B, we
refine our analysis by restricting observations to instances where both
individual and household health expenditure data are positive. This

sample adjustment aims to mitigate any potential bias arising from the
sample mismatch between individual and household data. The results
remain similar with those observed in Panel A. This difference may
signify the respondent’s enhanced familiarity with the household’s
financial circumstances, contributing to the higher accuracy of
household-level data.

5. Conclusion

This study has demonstrated how Benford’s law can be applied to
assess the reporting accuracy of health expenditure data in two promi-
nent public surveys, namely the China Health and Nutrition Survey
(CHNS) and the China Family Panel Studies (CFPS). Four key health
expenditure variables have been examined: total inpatient expenditure,
out-of-pocket inpatient expenditure, total health expenditure, and out-of-
pocket health expenditure. Results from χ2, V∗

N, and U2 tests indicate an
overall inconsistency of these health expenditure variables with Ben-
ford’s law in both datasets. While acknowledging the sensitivity of these
tests to sample size, the results still suggest the presence of reporting
inaccuracies in health expenditure data that warrant further examina-
tion. Although sophisticated econometric techniques may offer solutions
to mitigate measurement and reporting errors, recognizing and
addressing data quality concerns at the outset of any research endeavor
remains a crucial first step.

In assessing the degree of data inaccuracy, as measured by the sta-
tistical deviation from the Benford distribution, we find that expenditure
data related to inpatient care is more accurately reported than that of
overall health care and services. Additionally, the out-of-pocket expen-
diture data generally exhibits higher accuracy than the total expenditure
data. Furthermore, statistical deviation measures, with a focus on
EXMAD, demonstrate that the health expenditure data tends to be less
prone to errors in the CHNS. These results hold even after accounting for
differences in survey areas, years, and sample sizes between the two
datasets. To eliminate the potential impact of recall periods on our re-
sults, we conduct a Benford analysis on other non-health expense and
income variables with the same recall periods between two datasets, and
the results also prefer the CHNS. It is noteworthy that our findings based
on statistical tests and deviation measures are strongly supported by a
visual comparison of FSD distributions of the variables to the Benford
distribution. This visual assessment enhances the applicability of Ben-
ford’s law for future research and is highly recommended as a pre-
liminary step before statistical tests.

Our exploration into the potential indicators of health expenditure
data accuracy suggests that the enumerators’ opinions regarding re-
spondents, including their credibility and urgency to conclude the
interview, should not be relied upon as indicators of data accuracy.
Counterintuitively, less credible answers deemed by survey enumerators
lead to more accurate data reporting in our analysis. In contrast, the time
interval between hospitalization and interviews, self-reported responses
(as opposed to proxy responses), as well as household-level reported
data emerge as more reliable indicators for this purpose. These findings,
though specific to the CFPS and correlational rather than causal, open
the possibility of identifying data reporting issues using information

Table 9
Benford analysis results by household as opposed to individual-level data in CFPS.

Statistical Tests Deviation Measures Observations

χ2 Vn* U2 MAD EXMAD d*

Panel A. Entire Sample
Individual OOP Health Expenditure 13225.03*** 32.4190*** 109.2286*** 0.0284 0.0276 0.0949 103,785
Household OOP Health Expenditure 7501.19*** 23.7948*** 58.2905*** 0.0245 0.0237 0.0853 70,304
Panel B. Matched Individuals with Households
Individual OOP Health Expenditure 12231.57*** 31.4011*** 101.3986*** 0.0284 0.0276 0.0947 96,468
Household OOP Health Expenditure 4805.41*** 19.1455*** 37.9592*** 0.0240 0.0229 0.0834 47,195

Notes: * indicates 90 percent, ** indicates 95 percent, and *** indicates 99 percent, significantly different from the Benford distribution.
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within the dataset. This information is invaluable to survey designers
seeking to enhance data quality and to data users aiming to access more
accurate and reliable data for their research. Whenever possible, re-
searchers should prefer the health expenditure data that adheres to
Benford’s law. When confronted with inaccuracies detected by Ben-
ford’s Law, researchers should adopt robust strategies to mitigate their
impact on subsequent analyses. This may involve rigorous data cleaning
and validation processes, utilization of alternative econometric tech-
niques resilient to data anomalies, and at least transparent reporting of
encountered data quality issues. Additionally, researchers can leverage
advanced statistical tools, such as Monte Carlo simulations or machine
learning algorithms, to assess the sensitivity of their analyses to data
inaccuracies and develop strategies for addressing them effectively.

While Benford’s law offers an efficient and straightforward method
for testing the reporting inaccuracy of health expenditure data and
comparing the extent of data inaccuracies across datasets with different
designs, certain limitations should be acknowledged. First, more evi-
dence is needed to further validate the assumption that genuine health
expenditure data conforms to Benford’s Law, upon which our analysis
framework is predicated. While evidence from two hospital adminis-
trative datasets and Monte Carlo simulation studies suggests the validity
of this assumption, the generalizability of these results remains to be
confirmed across a wider range of administrative datasets through
future research. Any study utilizing Benford’s law to assess data accu-
racy should carefully verify this assumption to avoid falsified inference.
Second, it may not capture the entire impact of reporting and rounding
errors of health expenditure data. For example, if two respondents A and
B, have actual annual health expenditures of 5060 CNY and 4990 CNY,
both are likely to report expenses of 5000 CNY during interviews. Based
on the results of Benford analysis, the reported amount of respondent A
contributes to the conformance to Benford’s law, whereas respondent
B’s reported expenditure does not, despite being closer to the actual
amount. Third, further investigation is needed to comprehensively
explore the underlying reasons for discrepancies in reporting accuracy
between datasets, such as the CHNS and the CFPS. Existing studies have
identified the association between reporting accuracy and its de-
terminants by employing regression models that project the deviation
from Benford’s law onto those determinants (Dang and Owens, 2020;
Huang et al., 2020). However, such an approach is only applicable when
there are sufficient comparison groups, as in their studies, 16,391 British
charity organizations and 283 Chinese cities. However, there are only
two datasets available for comparison in our analysis. Finally, the sta-
tistical tests for conformance to Benford’s law are sensitive to sample
size. However, we mitigate the concerns about this issue by employing

deviation measures that are relatively less sensitive, although not
entirely immune to large discrepancies in sample sizes. This should pose
fewer concerns when comparing variables with similar sample sizes, yet
real-world scenarios often involve substantial differences in sample
sizes, both across variables and between datasets. Future research may
investigate more robust measures, such as EXMAD, to minimize the
impact of sample size variations on Benford analysis results. Future
research should also investigate the efficacy of Benford’s law in identi-
fying data inaccuracies and quantifying the magnitude thereof, which
would largely enhance the application of the Benford analysis.
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Appendix A. Tables and Figures

Table A1
Survey Questions about Health Expenditure in the CHNS

Panel A. Survey Questions

Wave Questions Inpatient
Expense

Total
Expense

Out-of-
Pocket

1989, 1991, 1993,
1997, 2000, 2004,
2006, 2009, 2011,
2015

During the past 4 weeks, how much money did you spend on self-treated illness or injury? (c) Yes
During the past 4 weeks, howmuch did the outpatient treatment cost or has this outpatient treatment
cost so far (including all registration fees, medicines, treatment fees, bed fees, etc.)?

(d) Yes

During the past 4 weeks, how much did the inpatient treatment cost or has this inpatient treatment
cost so far (including all registration fees, medicines, treatment fees, bed fees, etc.)?

(a) (e) Yes

1989, 1991, 1993,
1997, 2000

If seeking outpatient care at a second facility, how much did the treatment cost or has the treatment
cost so far?

(f) Yes

If seeking inpatient care at a second facility, how much did the treatment cost or has the treatment
cost so far?

(b) (g) Yes

1989, 1991, 1993,
1997, 2000, 2004,

How much money was spent or has been spent on treating your illness or injury in addition to the
costs mentioned above?

(h) n.a.

(continued on next page)
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Table A1 (continued )

Panel A. Survey Questions

Wave Questions Inpatient
Expense

Total
Expense

Out-of-
Pocket

2006, 2009, 2011,
2015

In the past four weeks, how much money did you spend on preventive care if you had any? (i) Yes

Panel B. Constructed Variables

Wave Total Inpatient Expenditure Total Health Expenditure Out-of-Pocket Expenditure

1989, 1991, 1993, 1997, 2000 (a)+(b) (c)+(d)+(e)+(f)+(g)+(h)+(i) Yes
2004, 2006, 2009, 2011, 2015 (a) (c)+(d)+(e)+(h)+(i) Yes

Table A2
Survey Questions about Health Expenditure in the CFPS

Panel A. Survey Questions

Wave Questions Inpatient
Expense

Total
Expense

Out-of-Pocket
Share

2010
2012

In the past year, how much money in total (including pharmacy, treatment, bed, accommodation,
dining, and nursing service) did you spend on all inpatient care?

(a) (c) Yes

2012 In the past year, how much money in total did you spend on health care? (including all expenses on
inpatient care and any other expense in addition to inpatient care)

(d) Yes

2014
2016
2018
2020

In the past twelve months, how much money (including pharmacy, treatment, bed, accommodation,
dining, and nursing service) did you spend on inpatient care?

(b) n.a.

In the past twelve months, how much money in total did you spend on health care? (e) Yes

Panel B. Constructed Variables

Wave Total Inpatient Expenditure Total Health Expenditure Out-of-Pocket Expenditure

2010 (a) n.a. Yes
2012 (a) (c)+(d) Yes
2014, 2016, 2018, 2020 (b) n.a.
2014, 2016, 2018, 2020 (e) Yes

Table A3
Relationship between Calculated E(MAD) and Sample Size

N E(MAD) N E(MAD) N E(MAD)

100 0.02352 300 0.01357 500 0.01051
110 0.02243 310 0.01334 550 0.01001
120 0.02142 320 0.01314 600 0.00959
130 0.02062 330 0.01292 650 0.00921
140 0.01987 340 0.01274 700 0.00888
150 0.01919 350 0.01255 750 0.00858
160 0.01858 360 0.01238 800 0.00830
170 0.01803 370 0.01221 850 0.00806
180 0.01752 380 0.01205 900 0.00783
190 0.01704 390 0.01189 950 0.00762
200 0.01661 400 0.01175 1000 0.00743
210 0.01621 410 0.01160 2000 0.00525
220 0.01585 420 0.01146 3000 0.00429
230 0.01551 430 0.01132 4000 0.00371
240 0.01514 440 0.01120 5000 0.00332
250 0.01486 450 0.01107 6000 0.00303
260 0.01457 460 0.01095 7000 0.00281
270 0.01430 470 0.01084 8000 0.00263
280 0.01404 480 0.01072 9000 0.00248
290 0.01379 490 0.01061 10,000 0.00235

Notes: The E(MAD) with a sample size of smaller than 500 is calculated in Python.
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Fig. A1. Plot of E(MAD) by Sample Size

Table A4
Benford Distribution and Observed Distributions of FSD of Health Expenditure Data

1 2 3 4 5 6 7 8 9 Observations

Panel A: Benford Distribution
Benford Distribution 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046
Panel B: Observed Distribution of FSD
CHNS Total Inpatient Expenditure 0.284 0.176 0.141 0.099 0.095 0.079 0.042 0.053 0.032 1145

OOP Inpatient Expenditure 0.276 0.155 0.142 0.119 0.071 0.072 0.061 0.062 0.041 605
Total Health Expenditure 0.304 0.202 0.140 0.077 0.113 0.061 0.030 0.049 0.025 15,537
OOP Health Expenditure 0.301 0.198 0.114 0.085 0.098 0.058 0.041 0.051 0.054 4377

CFPS Total Inpatient Expenditure 0.283 0.166 0.145 0.093 0.109 0.075 0.053 0.056 0.021 20,163
OOP Inpatient Expenditure 0.292 0.186 0.149 0.096 0.090 0.062 0.049 0.050 0.027 5229
Total Health Expenditure 0.302 0.209 0.150 0.066 0.148 0.055 0.027 0.034 0.009 130,936
OOP Health Expenditure 0.296 0.210 0.153 0.070 0.145 0.055 0.028 0.034 0.009 103,785

Fig. A2. EXMAD over Time in the CHNS
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Fig. A3. EXMAD over Time in the CFPS

Table A5
Descriptive Statistics of Other Expense and Income Variables

Mean S.D. Median Skewness Observations Mean/Median

Panel A. CHNS (in Chinese Yuan)
Education (past year) 3870 5491 1800 4.03 5147 2.15
Events (past year) 6667 12,176 2000 3.76 6312 3.33
Gifts (past year) 870 1761 400 15.28 58,238 2.17
Total Expenses (past year) 4701 21,169 1473 25.09 79,126 3.19
Individual Salary (past month) 1419 9393 680 91.10 27,454 2.09
Household Income (past year) 27,203 57,997 12,160 25.61 124,705 2.24
Panel B. CFPS (in Chinese Yuan)
Education (past year) 7197 10,902 4000 9.35 140,344 1.80
Events (past year) 25,476 51,495 10,000 12.45 18,823 2.55
Gifts (past year) 4075 6296 2000 9.45 172,045 2.04
Total Expenses (past year) 62,382 97,551 40,000 20.89 228,832 1.56
Individual Salary (past month) 7210 14,235 3000 16.83 49,503 2.40
Household Income (past year) 68,528 149,562 44,000 30.2 230,796 1.56
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